# **PROJECT TEAM**

| Project work carried out by: | Elena Berek – Team Leader      |
|------------------------------|--------------------------------|
|                              | Tony Berek - Env Technician    |
|                              |                                |
|                              |                                |
| Report prepared by:          | Elena Berek - Director         |
|                              |                                |
| Signature:                   |                                |
| Date:                        | 29 <sup>th</sup> August 2013   |
|                              |                                |
| Report reviewed by:          | Philip Butler                  |
|                              |                                |
| Signature:                   |                                |
| Date:                        | 2 <sup>nd</sup> September 2013 |
|                              |                                |
| Report authorised by:        | Philip Butler                  |
|                              |                                |
| Signature:                   |                                |
| Date:                        | 3 <sup>rd</sup> September 2013 |





# AUGUST 2013 EMISSIONS MONITORING REPORT Nationwide Crash Repair Centre Ltd

Report N°: P-RED13-072/EB/R1/Rev0

# **Prepared By:**

Redwing Environmental Ltd
Unit 7, Manor Road Business Park
Manor Road
Atherstone
Warwickshire CV9 1TE

Tel: 0844 686 7000 - Fax: 0844 686 7070

# Prepared for:

Richard Pugh
Nationwide Crash Repair Centre Ltd
Stonebridge Trading Estate
Rowley Drive
Coventry
CV3 4FG

Tel: 024 7630 7707



# **Contents**

| Executive | Summary |
|-----------|---------|
|-----------|---------|

| 1.0   | Introduction                                      | Page 1               |
|-------|---------------------------------------------------|----------------------|
| 1.0   | Monitoring Programme                              | Page 1               |
| 1.4   | Monitoring Results, comparison to emission limits | Page 2               |
| 2.0   | Supporting Info                                   | Page 3               |
| 2.1   | General Information                               | Page 3               |
| 2.1.1 | MCerts information                                | Page 3               |
| 2.2   | Methods                                           | Pages 3 – 4          |
| 3.0   | Quality Assurance                                 | Page 4               |
| 4.0   | Disclaimer                                        | Page 4               |
| Appen | dix A – Particulate and Velocity Results          | Appendix Page 1 to 7 |
|       |                                                   |                      |

Calibration Certificates available upon request



## **EXECUTIVE SUMMARY (Page 1 of 1)**

The following document details the emissions to air monitoring survey undertaken by Elena Berek & Tony Berek of Redwing Environmental Ltd at Nationwide Crash Repair Centre Ltd, Coventry on the 6<sup>th</sup> August 2013.

All results pertain to the dates monitored only; a summary of the results is listed below:

| Emission point<br>reference<br>Stack N° | Particulate<br>Concentration at<br>reference<br>conditions<br>(mg/m³) | Uncertainty<br>expressed at 95%<br>Confidence<br>(mg/m³) | Velocity<br>corrected to<br>reference<br>conditions<br>(m/s) | Volume flow<br>corrected to<br>reference<br>conditions<br>(m³/hour) |
|-----------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------|--------------------------------------------------------------|---------------------------------------------------------------------|
| Spray Booth 1                           | 3.4                                                                   | ± 0.31                                                   | 10.3                                                         | 18,592                                                              |
| Spray Booth 2                           | 1.6                                                                   | ± 0.30                                                   | 9.8                                                          | 17,755                                                              |
| Spray Booth 3                           | Spray Booth 3 3.8                                                     |                                                          | 9.8                                                          | 17,700                                                              |
| E                                       | Emission Limit Va                                                     | 10m                                                      | g/m³                                                         |                                                                     |

NOTE 1: Reference conditions are standard temperature (273K) and pressure (101.3kPa) and no correction for water vapour



#### 1.0 INTRODUCTION

- 1.1 Nationwide Crash Repair Centre Ltd operates a car body repair process at their site in Coventry. Monitoring of the exhausts were carried out with respect to quotation Q-RED13-072EBv0 for the compliance check monitoring of emissions to air.
- 1.2 The objective of the monitoring survey was to determine emission concentrations in order to evaluate performance against the emission limits set in the process authorisation.

The substances requested for monitoring at each emission point are listed below:

# **Monitoring Programme**

| Substances to be         | Emission Point Identification |               |               |  |  |  |  |
|--------------------------|-------------------------------|---------------|---------------|--|--|--|--|
| monitored                | Spray Booth 1                 | Spray Booth 2 | Spray Booth 3 |  |  |  |  |
| Total Particulate Matter | ✓                             | ✓             | ✓             |  |  |  |  |

1.3 The velocity and temperature profiles were within the required parameters of 3:1 metres/second and ± 5% for the temperature profile. This information indicates that the sample ports are in ideal positions to collect the samples under representative conditions.



# 1.4 Monitoring Results

| Emission<br>Point<br>Reference | Substance to be<br>Monitored | Emission<br>Limit Value | Periodic<br>Monitoring<br>Result | Uncertainty<br>expressed at<br>95%<br>confidence | Units             | Reference<br>Conditions<br>273 K,<br>101.3 kPa | Date of<br>Sampling | Start and End<br>Times | Monitoring<br>Method<br>Reference | Operating<br>Status                                       |
|--------------------------------|------------------------------|-------------------------|----------------------------------|--------------------------------------------------|-------------------|------------------------------------------------|---------------------|------------------------|-----------------------------------|-----------------------------------------------------------|
| Spray<br>Booth 1               | Total Particulate<br>Matter  | 10                      | 3.4                              | ± 0.31                                           | mg/m <sup>3</sup> | 273,<br>101.3kPa                               | 08/05/13            | 0840 – 0913            | BS EN<br>13284-1                  | Bumper,<br>boot, driver<br>door and<br>rear wing<br>Corsa |
| Spray<br>Booth 2               | Total Particulate<br>Matter  | 10                      | 1.6                              | ± 0.30                                           | mg/m <sup>3</sup> | 273,<br>101.3kPa                               | 08/05/13            | 0840 – 0913            | BS EN<br>13284-1                  | Bumpers,<br>Boot and<br>door Fiat<br>Punto                |
| Spray<br>Booth 3               | Total Particulate<br>Matter  | 10                      | 3.8                              | ± 0.30                                           | mg/m <sup>3</sup> | 273,<br>101.3kPa                               | 08/05/13            | 0840 – 0913            | BS EN<br>13284-1                  | Near side<br>rear quarter<br>Ford Fiesta                  |

## 2 Supporting Information (Held by Redwing Environmental Ltd)

#### 2.1 General Information

#### 2.1.1 Redwing Environmental Ltd staff details

Elena Berek & Tony Berek

## 2.2 Redwing Environmental Ltd method details

## 2.2.1 Stack Velocity, Pressure and Temperature Measurements

2.2.2 The stack velocity, pressure and temperature will be measured by full pitot traverses of the duct using the points provided. Measurements will be taken at the relevant positions based on the particulate standard followed.

## 2.3 Leak tests for extractive techniques

2.3.1 All extractive-sampling techniques were tested for leaks before sampling proceeded. Any leaks present were eliminated prior to sampling and will be reported.

#### 2.4 Data standardisation

- 2.4.1 Pollutant concentrations are expressed at reference conditions 273 K and 101.3 kPa.
- 2.4.2 The following formulae have been used to convert the measured values to reference conditions:

Temperature and pressure correction:-

$$C_r = C_d x (T_d/273) x (101.3/P_d)$$

 $C_r = Concentration$  at reference conditions (mg/m<sup>3</sup>)

C<sub>d</sub> = Concentration at discharge conditions (mg/m<sup>3</sup>)

T<sub>d</sub> = Temperature at discharge conditions (K)

P<sub>d</sub> = Pressure at discharge conditions (kPa)

#### 3.0 Particulate matter BS EN 13284-1 – Total Particulate Matter

- 3.1.1 Total particulate matter was sampled using a Zambelli 6000 plus isokinetic sampling system in accordance with BS EN 13284-1.
- 3.1.2 The Zambelli sampling system monitors temperature, static pressure and velocities within the duct using an S-type pitot tube and K-type thermocouple. The sampling rate was continuously monitored and adjusted relative to the duct velocity to ensure isokinetic-sampling conditions are maintained throughout the monitoring period.



- 3.1.3 Exhaust gases were drawn under isokinetic conditions from the exhaust points using the Zambelli sampling probe, particulate matter was then collected on a pre-weighed glass fibre filter contained within the filter cassette holder, and the total particulate matter determined gravimetrically.
- 3.1.4 It was also necessary to wash the probe and nozzle out with water and then acetone between sampling and the weight of the probe washing added to that collected on the sample filter. Analysis of an acetone/water blank was carried out and the result corrected accordingly.
- 3.1.5 The sample positions were calculated with respect to BS EN 13284-1 Stationary source emissions Manual determination of mass concentration of particulate matter.
- 3.1.6 Sampling was carried out internally (in-stack monitoring), there were no reported deviations from the method therefore the uncertainty for the monitoring procedure was reported to be:

Uncertainty: + 30%

#### 4.0 Quality Assurance

- 4.1 Redwing Environmental Ltd is accredited to ISO 9001:2008 and ISO 14001:2004 and will always endeavour to follow the methods specified in the Environment Agency Technical Guidance M2.
- 4.2 Redwing Environmental Ltd is a member of the Source Testing Association (STA) and therefore operates under the STA's code of practice.

#### 5.0 Disclaimer

- 5.1 Redwing Environmental Ltd confirms that in preparing this report all reasonable skill and care has been exercised.
- 5.1.1 Unless specifically assigned or transferred within the terms of the agreement, Redwing Environmental Ltd asserts and retains all copyright, and other Intellectual Property Rights, in and over the report and its contents.



# **APPENDIX A**

**Particulate & Velocity Results** 



| Client                   | Nationwide Crash R       | epair                |                  |            |                              |                                        |                            |                     |                  |
|--------------------------|--------------------------|----------------------|------------------|------------|------------------------------|----------------------------------------|----------------------------|---------------------|------------------|
| Site Address             | Coventry                 |                      |                  |            |                              |                                        |                            |                     |                  |
| Job Number               | P-RED13-072              |                      |                  |            |                              |                                        |                            |                     |                  |
| Date                     | 6th August 2013          |                      |                  |            |                              |                                        |                            |                     |                  |
| Operator(s)              | E Berek & T Berek        |                      |                  |            |                              |                                        |                            |                     |                  |
| operator(s)              | E Bereit a 1 Bereit      |                      |                  | T          |                              |                                        |                            |                     |                  |
|                          |                          |                      |                  |            | Isokinetic Sam               | ple Positions (%)                      | San                        | ıpling Plane Diagra | m                |
| Stack De                 | eference                 |                      | Spray Booth 1    |            | multiply by diamet           | er to obtain sample                    | Juli                       | ipinig Flanc Blagra |                  |
| Stack IX                 | erence                   |                      | Spray Booti i    |            | 1 po                         | 14.60                                  |                            | ·                   |                  |
| Number of Stacks         |                          |                      |                  | 1          | 2                            | 85.40                                  |                            |                     |                  |
| Stack Configuratio       | n                        |                      | P                | ound       | 3                            | N/A                                    | /                          |                     | Sample<br>Line B |
| Dimensions (mtrs)        |                          |                      |                  | 0.80       | 4                            | N/A                                    |                            |                     |                  |
|                          | applicable) (metres      | 1                    | ,                | 7.00       | 5                            | N/A                                    | \                          |                     | J                |
| Number of Sample         |                          | ,                    |                  | 1          | 6                            | N/A                                    |                            |                     |                  |
| -                        |                          |                      |                  | 2          | 7                            | N/A                                    |                            | Sample<br>Line A    |                  |
| Number of Sample         |                          |                      |                  | 7.0        | 8                            |                                        |                            | < • ·               |                  |
| Nozzle Diameter (n       |                          |                      |                  | 003847     | - ° -                        | N/A                                    |                            | Avic 4              | Avi- 0           |
| Nozzle Area (m²)         |                          |                      |                  |            | Average                      | Isokinetic Flow Rate                   | (Itrs/min)                 | Axis 1              | Axis 2           |
| Stack Area (m²)          | 0.94                     | Diace C              |                  | .503       |                              | 45th March 2044                        |                            | 22.70               | 24.72            |
| Pitot Coefficient        | 0.84                     |                      | Calibration Due  |            | Aut- 0                       | 15th March 2014                        | Swint To at                | Atmos. Pres         |                  |
| Position                 | Distance                 | Axis 1               | Temperature      | Swirl Test | Axis 2                       | Temperature                            | Swirl Test                 | 100                 |                  |
| No.                      | (cms)                    | (pa)                 | (C)              | (°)        | (pa)                         | (C)                                    | (°)                        | Static Pres         |                  |
| 1                        | 11.68                    | 67                   | 31.5             | 13.4       | 88                           | 31.6                                   | 11.5                       | -31                 |                  |
| 2                        | 68.32                    | 89                   | 31.6             | 13.5       | 97                           | 31.4                                   | 12.4                       | 1 Axis              | 2 Axis           |
| 3                        | N/A                      |                      |                  |            |                              |                                        |                            | Velocity of         |                  |
| 4                        | N/A                      |                      |                  |            |                              |                                        |                            | 9.84                | 10.71            |
| 5                        | N/A                      |                      |                  |            |                              |                                        |                            | Volume Flow         | • • •            |
| 6                        | N/A                      |                      |                  |            |                              |                                        |                            | 4.94                | 5.38             |
| 7                        | N/A                      |                      |                  |            |                              |                                        |                            | Reduce              | ed Exit          |
| 8                        | N/A                      |                      |                  |            |                              |                                        |                            |                     |                  |
| Averages                 |                          | 78                   | 31.6             |            | 93                           | 31.5                                   |                            | N/                  | A                |
|                          | mp (in K) Tp = ((Mea     |                      |                  |            |                              |                                        | 304.55                     |                     |                  |
|                          | f gas temperature re     | eadings (C) = (0.95T | p-273) to (1.057 | Гр-273) =  |                              | 16.32                                  | to                         |                     | 46.78            |
| Highest Velocity R       |                          | =                    |                  |            |                              | 11.3                                   |                            |                     |                  |
| Lowest Velocity Re       |                          | =                    |                  |            |                              | 9.1                                    |                            |                     |                  |
| Ratio Highest/Low        | est (Max permitted =     | = 3:1)               |                  |            |                              |                                        |                            | 1.24 :              | 1                |
|                          |                          |                      |                  | On si      | ite Checklist                |                                        |                            |                     |                  |
| Initial Leak Check       | <0.2                     | End of first run     | <0.2             |            | Start of and                 | N/A                                    | End of Old                 | N/                  | Δ.               |
|                          |                          | Zilu of ilist full   | -U.Z             |            | Start of 2 <sup>nd</sup> run |                                        | End of 2 <sup>nd</sup> run |                     |                  |
|                          | k Check < 2% Vol<br>nin) | 0.45                 |                  |            | N                            | Manometer Leak Che<br>Pitot Leak Check | CK                         | 0                   |                  |
| Range of 0               | Gas Temps                | ок                   |                  |            | Overall lectric              |                                        | bo 95 to 145%              | Run 1               | Run 2            |
| _                        | num Velocity require     |                      | YES              |            | Overali isokir               | netic Ratio (%) (must                  | DE 30 (0 110%)             | 101.2               | N/A              |
| Negative Local I         | Flow Present, YES o      | or NO (Yes = Fail)   | NO               |            | Are there sufficier          | nt rails and kick board                | d? (YES , NO or N/A        | )                   | N/A              |
| is the Platform are      | ea greater than 5m²      | ? (YES, NO or N/A)   | N/A              |            | Is the area infro            | nt of the sample line                  | the length of the pr       | robe + 1 metre?     | YES              |
| Passed H                 | lighest to lowest Ve     | locity (3:1)         | YES              |            |                              | (YES o                                 | r NO)                      |                     | 123              |
|                          |                          |                      |                  | Site Eq    | uipment Used                 |                                        |                            |                     |                  |
| Pitot Reference RED 0290 |                          |                      |                  |            |                              | Manometer Reference                    |                            |                     | 0400             |
|                          | er Reference             | RED 0353             |                  | +          |                              | nermocouple Referen                    |                            | RED                 |                  |
|                          | Reference                | N/A                  |                  | +          |                              | mpling Pump Refere                     |                            | RED                 |                  |
|                          | re Reference             | RED 0                |                  | -          |                              | Barometer Referenc                     |                            | RED                 |                  |
|                          | rmocouple                | RED 0                |                  |            |                              | nger Outlet Thermoo                    |                            | N/N/                |                  |
|                          | ipers                    | RED 0                |                  |            | -                            | ondenser Thermocou                     |                            | N/                  |                  |
| Call                     |                          | KED 0                |                  |            | 1                            |                                        | -F                         | IN/                 | ••               |



| Stack Reference ID                                                           | Spray Booth 1           |              |                    |       |    |       |  |  |  |
|------------------------------------------------------------------------------|-------------------------|--------------|--------------------|-------|----|-------|--|--|--|
|                                                                              | Nationwide Crash Repair |              |                    |       |    |       |  |  |  |
|                                                                              | RUN 1                   |              |                    |       |    |       |  |  |  |
| Filter Reference No                                                          | G47-050813-05           |              |                    |       |    |       |  |  |  |
| Date                                                                         | 6th August 2013         |              |                    |       |    |       |  |  |  |
| Sample Period                                                                | 13:55                   |              | to                 |       |    | 14:58 |  |  |  |
| Velocity (m/s)                                                               |                         |              | 10.27              |       |    |       |  |  |  |
| Volume flow rate of Stack gas (m³/hr)                                        |                         |              | 18592              |       |    |       |  |  |  |
| Average Stack Temp (°C)                                                      |                         |              | 31.6               |       |    |       |  |  |  |
| Temp Range ± 5% (°C)                                                         | 16.32                   |              | to                 |       |    | 46.78 |  |  |  |
| Lowest Velocity Reading (m/s)                                                |                         |              | 9.09               |       |    |       |  |  |  |
| Highest Velocity Reading (m/s)                                               |                         |              | 11.28              |       |    |       |  |  |  |
| Ratio (less than 3:1)                                                        | 1.24                    |              | :                  |       |    | 1     |  |  |  |
| Pre-conditioning temperature of Filter (°C)                                  |                         |              | 180                |       |    |       |  |  |  |
| nstack sampling - Max Filter temperature (°C)                                |                         |              | 31.8               |       |    |       |  |  |  |
| Post-conditioning temperature Filter/Wash (°C)                               |                         |              | 160                |       |    |       |  |  |  |
| Oxygen %                                                                     |                         |              | 19.5               |       |    |       |  |  |  |
| Carbon Dioxide %                                                             |                         |              | 0.30               |       |    |       |  |  |  |
| Moisture (%)                                                                 |                         |              | 1.10               |       |    |       |  |  |  |
| Litres sampled                                                               |                         |              | 1402               |       |    |       |  |  |  |
| Corrected volume sampled - STP (m³)                                          | 1.271                   |              |                    |       |    |       |  |  |  |
| Blank Filter Run weight gain (mg)                                            | 0.0                     | 000          | Blank<br>Concentra |       |    | 0.000 |  |  |  |
| Blank Wash Run weight gain (mg)                                              | 0.0                     | 060          | (mg/m <sup>3</sup> |       |    | 0.047 |  |  |  |
| Weighing uncertainty of balance (mg)                                         | 0.079                   | This must be | e <5% of ELV       | ELV = | 10 | 0.5   |  |  |  |
| Overall Blank value (mg/m³)                                                  | 0.047                   | This must be | <10% of ELV        | ELV = | 10 | 1.0   |  |  |  |
| Particulate weight collected on filter (mg)                                  |                         |              | 0.35               |       |    |       |  |  |  |
| Particulate weight collected in Wash (mg)                                    |                         |              | 3.95               |       |    |       |  |  |  |
| Total Particulate weight collected (mg)                                      |                         |              | 4.30               |       |    |       |  |  |  |
| Total Particulate Concentration, dry gas at STP<br>(mg/m³)                   | 3.38                    |              |                    |       |    |       |  |  |  |
| Total Particulate Concentration, wet gas at STP (mg/m³)                      |                         |              | 3.35               |       |    |       |  |  |  |
| Total Particulate Concentration corrected for 11%<br>Oxygen, dry gas (mg/m³) |                         |              | N/A                |       |    |       |  |  |  |
| Total Particulate Mass Emission (kg/hour)                                    |                         |              | 0.06               |       |    |       |  |  |  |



| Oli4                | lu contra de la contra del la contra de la contra del la contra del la contra de la contra del la co |                      |                  |            |                              |                                          |                            |                    |             |
|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------|------------|------------------------------|------------------------------------------|----------------------------|--------------------|-------------|
| Client              | Nationwide Crash R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ераіг                |                  |            |                              |                                          |                            |                    |             |
| Site Address        | Coventry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |                  |            |                              |                                          |                            |                    |             |
| Job Number          | P-RED13-072                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                      |                  |            |                              |                                          |                            |                    |             |
| Date                | 6th August 2013                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                  |            |                              |                                          |                            |                    |             |
| Operator(s)         | E Berek & T Berek                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                  |            |                              |                                          |                            |                    |             |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                  |            | la abia atia Cana            | -l- Diti (9/)                            |                            |                    |             |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                  |            |                              | ple Positions (%)<br>er to obtain sample | Sam                        | pling Plane Diagra | m           |
| Stack Re            | eference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      | Spray Booth 2    |            |                              | ints                                     |                            |                    |             |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | T                |            | 1                            | 14.60                                    |                            |                    |             |
| Number of Stacks    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                  | 1          | 2                            | 85.40                                    |                            |                    | Sample      |
| Stack Configuration | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      | Ri               | ound       | 3                            | N/A                                      |                            |                    | Line B      |
| Dimensions (mtrs)   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | 0                | 0.80       | 4                            | N/A                                      |                            |                    | ·           |
| Outlet Diameter (if | applicable) (metres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | )                    |                  |            | 5                            | N/A                                      | \                          |                    | /           |
| Number of Sample    | Ports                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |                  | 1          | 6                            | N/A                                      |                            | Sample             |             |
| Number of Samples   | s per Axis / Port                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                      |                  | 2          | 7                            | N/A                                      |                            | Line A             | /           |
| Nozzle Diameter (n  | nm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |                  | 7.0        | 8                            | N/A                                      |                            |                    |             |
| Nozzle Area (m²)    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                  | 003847     | Average                      | Isokinetic Flow Rate                     | e (Itrs/min)               | Axis 1             | Axis 2      |
| Stack Area (m²)     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      | 0.               | .503       | siage                        |                                          | (                          | 22.13              | 23.16       |
| Pitot Coefficient   | 0.84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Pitot 0              | Calibration Due  | Date       |                              | 15th March 2014                          |                            | Atmos. Pres        | ssure (kPa) |
| Position            | Distance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Axis 1               | Temperature      | Swirl Test | Axis 2                       | Temperature                              | Swirl Test                 | 100                |             |
| No.                 | (cms)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (pa)                 | (C)              | (°)        | (pa)                         | (C)                                      | (°)                        | Static Pre         | ssure (pa)  |
| 1                   | 11.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 45                   | 32.2             | 12.5       | 72                           | 32.2                                     | 14.1                       | -21                | .0          |
| 2                   | 68.32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 103                  | 32.1             | 13.6       | 90                           | 32.1                                     | 13.4                       | 1 Axis             | 2 Axis      |
| 3                   | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |                  |            |                              |                                          |                            | Velocity of        | flow (m/s)  |
| 4                   | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |                  |            |                              |                                          |                            | 9.59               | 10.03       |
| 5                   | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |                  |            |                              |                                          |                            | Volume Flow        | Rate (m³/s) |
| 6                   | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |                  |            |                              |                                          |                            | 4.82               | 5.04        |
| 7                   | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |                  |            |                              |                                          |                            | Reduc              | ad Evit     |
| 8                   | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |                  |            |                              |                                          |                            | reduc              | Ju Exit     |
| Averages            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 74                   | 32.2             |            | 81                           | 32.2                                     |                            | N/                 | A           |
| Mean Flue Gas Ter   | mp (in K) Tp = ((Mea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ın T1 + Mean T2)/2)- | +273)) =         |            |                              |                                          | 305.1                      | 5                  |             |
| Permitted Range o   | f gas temperature r                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | eadings (C) = (0.95T | p-273) to (1.05T | p-273) =   |                              | 16.89                                    | to                         |                    | 47.41       |
| Highest Velocity Re | eading (m/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | =                    |                  |            |                              |                                          | 11.6                       | i                  |             |
| Lowest Velocity Re  | eading (m/s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | =                    |                  |            |                              |                                          | 7.5                        |                    |             |
| Ratio Highest/Lowe  | est (Max permitted =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | = 3:1)               |                  |            |                              |                                          |                            | 1.56               | 1           |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                  | On si      | ite Checklist                |                                          |                            |                    |             |
| Initial Leak Check  | <0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | End of first run     | <0.2             |            | Start of 2 <sup>nd</sup> run | N/A                                      | End of 2 <sup>nd</sup> run | N                  | A           |
|                     | k Check < 2% Vol                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |                  |            |                              | Manometer Leak Che                       |                            | 0                  |             |
|                     | min)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.44                 |                  |            | -                            | Pitot Leak Check                         |                            | 0                  |             |
| Range of (          | Gas Temps                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ОК                   |                  |            | _                            |                                          |                            | Run 1              | Run 2       |
|                     | num Velocity require                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      | YES              |            | Overall Isokir               | netic Ratio (%) (must                    | be 95 to 115%)             | 100.1              | N/A         |
|                     | Flow Present, YES o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      | NO               |            | Are there sufficier          | nt rails and kick boar                   | d? (YES , NO or N/A)       |                    | N/A         |
|                     | ea greater than 5m²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      | N/A              |            |                              | nt of the sample line                    |                            |                    |             |
|                     | lighest to lowest Vel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      | YES              |            |                              | (YES                                     |                            |                    | YES         |
| r assea ii          | inginest to lowest ve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | outy (0.1)           | 120              | Site Ea    | uipment Used                 |                                          |                            |                    |             |
| Ditot Do            | eference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | RED 0                | 290              |            |                              | Manometer Referen                        | Ce Ce                      | RED                | 0400        |
|                     | er Reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | RED 0353             |                  |            |                              | nermocouple Refere                       |                            | RED                |             |
|                     | Reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | N/A                  |                  |            |                              | mpling Pump Refere                       |                            | RED                |             |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RED 0                |                  |            |                              | Barometer Reference                      |                            |                    |             |
|                     | re Reference                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |                  |            |                              |                                          |                            | RED                |             |
|                     | rmocouple                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | RED 0                |                  |            | Impinger Outlet Thermocouple |                                          |                            | N/A<br>N/A         |             |
| Call                | ipers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | KED U                | UU I             | l          |                              | ondenser Thermoco                        | uhie                       | N                  | ^           |



| Stack Reference ID                                                        | Spray Booth 2           |              |                    |      |    |       |  |  |  |
|---------------------------------------------------------------------------|-------------------------|--------------|--------------------|------|----|-------|--|--|--|
|                                                                           | Nationwide Crash Repair |              |                    |      |    |       |  |  |  |
|                                                                           | RUN 1                   |              |                    |      |    |       |  |  |  |
| Filter Reference No                                                       | G47-050813-03           |              |                    |      |    |       |  |  |  |
| Date                                                                      | 6th August 2013         |              |                    |      |    |       |  |  |  |
| Sample Period                                                             | 10:28                   |              | to                 |      |    | 11:32 |  |  |  |
| Velocity (m/s)                                                            |                         | ·            | 9.81               |      |    |       |  |  |  |
| Volume flow rate of Stack gas (m³/hr)                                     |                         |              | 17755              |      |    |       |  |  |  |
| Average Stack Temp (°C)                                                   |                         |              | 32.2               |      |    |       |  |  |  |
| Temp Range ± 5% (°C)                                                      | 16.89                   |              | to                 |      |    | 47.41 |  |  |  |
| Lowest Velocity Reading (m/s)                                             |                         |              | 7.46               |      |    |       |  |  |  |
| Highest Velocity Reading (m/s)                                            |                         |              | 11.64              |      |    |       |  |  |  |
| Ratio (less than 3:1)                                                     | 1.56                    |              | :                  |      |    | 1     |  |  |  |
| Pre-conditioning temperature of Filter (°C)                               |                         |              | 180                |      |    |       |  |  |  |
| nstack sampling - Max Filter temperature (°C)                             |                         |              | 32.4               |      |    |       |  |  |  |
| Post-conditioning temperature Filter/Wash (°C)                            |                         |              | 160                |      |    |       |  |  |  |
| Oxygen %                                                                  |                         |              | 19.5               |      |    |       |  |  |  |
| Carbon Dioxide %                                                          |                         |              | 0.30               |      |    |       |  |  |  |
| Moisture (%)                                                              |                         |              | 1.10               |      |    |       |  |  |  |
| Litres sampled                                                            |                         |              | 1384               |      |    |       |  |  |  |
| Corrected volume sampled - STP (m³)                                       | 1.260                   |              |                    |      |    |       |  |  |  |
| Blank Filter Run weight gain (mg)                                         | 0.0                     | 000          | Blank<br>Concentra |      |    | 0.000 |  |  |  |
| Blank Wash Run weight gain (mg)                                           | 0.4                     | 150          | (mg/m <sup>3</sup> |      |    | 0.357 |  |  |  |
| Weighing uncertainty of balance (mg)                                      | 0.075                   | This must be | e <5% of ELV       | ELV= | 10 | 0.5   |  |  |  |
| Overall Blank value (mg/m³)                                               | 0.357                   | This must be | <10% of ELV        | ELV= | 10 | 1.0   |  |  |  |
| Particulate weight collected on filter (mg)                               |                         |              | 0.25               |      |    |       |  |  |  |
| Particulate weight collected in Wash (mg)                                 |                         |              | 1.81               |      |    |       |  |  |  |
| Total Particulate weight collected (mg)                                   |                         |              | 2.06               |      |    |       |  |  |  |
| Total Particulate Concentration, dry gas at STP (mg/m³)                   |                         |              | 1.63               |      |    |       |  |  |  |
| Total Particulate Concentration, wet gas at STP (mg/m³)                   | 1.62                    |              |                    |      |    |       |  |  |  |
| Total Particulate Concentration corrected for 11% Oxygen, dry gas (mg/m³) |                         |              | N/A                |      |    |       |  |  |  |
| Total Particulate Mass Emission (kg/hour)                                 |                         |              | 0.03               |      |    |       |  |  |  |



| Client              | Nationwide Crash R   | epair               |                   |            |                              |                                             |                            |                    |               |  |
|---------------------|----------------------|---------------------|-------------------|------------|------------------------------|---------------------------------------------|----------------------------|--------------------|---------------|--|
| Site Address        | Coventry             |                     |                   |            |                              |                                             |                            |                    |               |  |
| Job Number          | P-RED13-072          |                     |                   |            |                              |                                             |                            |                    |               |  |
| Date                | 6th August 2013      |                     |                   |            |                              |                                             |                            |                    |               |  |
| Operator(s)         | E Berek & T Berek    |                     |                   |            |                              |                                             |                            |                    |               |  |
|                     |                      |                     |                   |            |                              |                                             |                            |                    |               |  |
|                     |                      |                     |                   |            |                              | ple Positions (%)<br>ter to obtain sample - | San                        | pling Plane Diagra | am            |  |
| Stack Re            | eference             |                     | Spray Booth 3     |            |                              | pints                                       |                            |                    |               |  |
|                     |                      |                     |                   |            | 1                            | 14.60                                       |                            |                    |               |  |
| Number of Stacks    |                      |                     |                   | 1          | 2                            | 85.40                                       |                            |                    | Sample        |  |
| Stack Configuration | n                    |                     | Ro                | ound       | 3                            | N/A                                         | /                          |                    | Line B        |  |
| Dimensions (mtrs)   |                      |                     | 0                 | .80        | 4                            | N/A                                         | •                          |                    | •             |  |
| Outlet Diameter (if | applicable) (metres  |                     |                   |            | 5                            | N/A                                         | \                          |                    | /             |  |
| Number of Sample    | Ports                |                     |                   | 1          | 6                            | N/A                                         |                            | Sample             |               |  |
| Number of Samples   | s per Axis / Port    |                     |                   | 2          | 7                            | N/A                                         |                            | Line A             |               |  |
| Nozzle Diameter (n  | nm)                  |                     | 7                 | 7.0        | 8                            | N/A                                         |                            |                    |               |  |
| Nozzle Area (m²)    |                      |                     | 0.000             | 003847     | Average                      | Isokinetic Flow Rate                        | (ltrs/min)                 | Axis 1             | Axis 2        |  |
| Stack Area (m²)     |                      |                     | 0.                | 503        | Average                      |                                             | \ <i>3</i> //////////      | 22.50              | 22.65         |  |
| Pitot Coefficient   | 0.84                 | Pitot 0             | Calibration Due I | Date       |                              | 15th March 2014                             |                            | Atmos. Pre         | ssure (kPa)   |  |
| Position            | Distance             | Axis 1              | Temperature       | Swirl Test | Axis 2                       | Temperature                                 | Swirl Test                 | 10                 | 0.0           |  |
| No.                 | (cms)                | (pa)                | (C)               | (°)        | (pa)                         | (C)                                         | (°)                        | Static Pre         | ssure (pa)    |  |
| 1                   | 11.68                | 100                 | 30.1              | 11.5       | 67                           | 30                                          | 12.7                       | -2                 | 7.0           |  |
| 2                   | 68.32                | 54                  | 30.0              | 13.5       | 89                           | 30                                          | 13.2                       | 1 Axis             | 2 Axis        |  |
| 3                   | N/A                  |                     |                   |            |                              |                                             |                            | Velocity o         | f flow (m/s)  |  |
| 4                   | N/A                  |                     |                   |            |                              |                                             |                            | 9.75               | 9.81          |  |
| 5                   | N/A                  |                     |                   |            |                              |                                             |                            | Volume Flor        | v Rate (m³/s) |  |
| 6                   | N/A                  |                     |                   |            |                              |                                             |                            | 4.90               | 4.93          |  |
| 7                   | N/A                  |                     |                   |            |                              |                                             |                            | Badua              | ed Exit       |  |
| 8                   | N/A                  |                     |                   |            |                              |                                             |                            | Reduc              | ea Exit       |  |
| Averages            |                      | 77                  | 30.1              |            | 78                           | 30.0                                        |                            | N                  | /A            |  |
| Mean Flue Gas Ter   | mp (in K) Tp = ((Mea | n T1 + Mean T2)/2)- | +273)) =          |            |                              |                                             | 303.0                      | )5                 |               |  |
|                     | f gas temperature re |                     |                   | p-273) =   |                              | 14.90                                       | to                         | 45.20              |               |  |
| Highest Velocity Re | eading (m/s)         | =                   |                   |            |                              |                                             | 11.4                       | ı                  |               |  |
| Lowest Velocity Re  |                      | =                   |                   |            |                              | 8.1                                         |                            |                    |               |  |
|                     | est (Max permitted = | : 3:1)              |                   |            |                              |                                             |                            | 1.40               | :1            |  |
|                     |                      |                     |                   | On air     | te Checklist                 |                                             |                            |                    |               |  |
|                     |                      |                     |                   | Oli sii    | te Checklist                 |                                             |                            |                    |               |  |
| Initial Leak Check  | <0.2                 | End of first run    | <0.2              |            | Start of 2 <sup>nd</sup> run | N/A                                         | End of 2 <sup>nd</sup> run | N                  | /A            |  |
|                     | Check < 2% Vol       | 0.45                |                   |            |                              | Manometer Leak Che                          | ck                         | C                  | K             |  |
| (I/n                | nin)                 |                     |                   |            |                              | Pitot Leak Check                            |                            |                    | К             |  |
| Range of 0          | Gas Temps            | ок                  |                   |            | Overall Isokii               | netic Ratio (%) (must                       | be 95 to 115%)             | Run 1              | Run 2         |  |
| Passed minin        | num Velocity require | ements (>5pa)       | YES               |            | 2.2.2 /36/(1)                | () ()                                       |                            | 100.1              | N/A           |  |
| Negative Local F    | low Present, YES o   | r NO (Yes = Fail)   | NO                |            | Are there sufficien          | nt rails and kick board                     | d? (YES , NO or N/A        | )                  | YES           |  |
| Is the Platform are | ea greater than 5m²? | YES, NO or N/A)     | N/A               |            | Is the area infro            | ont of the sample line                      |                            | obe + 1 metre?     | YES           |  |
| Passed H            | ighest to lowest Vel | ocity (3:1)         | YES               |            |                              | (YES o                                      | r NO)                      |                    |               |  |
|                     |                      |                     |                   | Site Eq    | uipment Used                 |                                             |                            |                    |               |  |
| Pitot Re            | eference             | RED 0               | 290               |            |                              | Manometer Reference                         | e                          | RED                | 0400          |  |
|                     | er Reference         | RED 0353            |                   |            |                              | hermocouple Refere                          |                            |                    | 0362          |  |
|                     | Reference            | N/A                 |                   |            |                              | ampling Pump Refere                         |                            |                    | 0258          |  |
|                     | re Reference         | RED 0               |                   |            |                              | Barometer Reference                         |                            |                    | 0402          |  |
|                     | rmocouple            | RED 0               |                   |            |                              | nger Outlet Thermoo                         |                            |                    | I/A           |  |
|                     | pers                 | RED 0               |                   |            | -                            | ondenser Thermocou                          | -                          |                    | N/A<br>N/A    |  |
|                     |                      |                     |                   |            |                              |                                             |                            |                    |               |  |



| Stack Reference ID                                                        | Spray Booth 3           |                          |    |       |       |       |
|---------------------------------------------------------------------------|-------------------------|--------------------------|----|-------|-------|-------|
|                                                                           | Nationwide Crash Repair |                          |    |       |       |       |
|                                                                           | RUN 1                   |                          |    |       |       |       |
| Filter Reference No                                                       | G47-050813-01           |                          |    |       |       |       |
| Date                                                                      | 6th August 2013         |                          |    |       |       |       |
| Sample Period                                                             | 08:50                   |                          | to |       | 09:52 |       |
| Velocity (m/s)                                                            | 9.78                    |                          |    |       |       |       |
| Volume flow rate of Stack gas (m³/hr)                                     | 17700                   |                          |    |       |       |       |
| Average Stack Temp (°C)                                                   | 30.1                    |                          |    |       |       |       |
| Temp Range ± 5% (°C)                                                      | 14.90 to                |                          |    |       | 45.20 |       |
| Lowest Velocity Reading (m/s)                                             | 8.14                    |                          |    |       |       |       |
| Highest Velocity Reading (m/s)                                            | 11.43                   |                          |    |       |       |       |
| Ratio (less than 3:1)                                                     | 1.40                    | :                        | 1  |       |       |       |
| Pre-conditioning temperature of Filter (°C)                               | 180                     |                          |    |       |       |       |
| Instack sampling - Max Filter temperature (°C)                            | 30.4                    |                          |    |       |       |       |
| Post-conditioning temperature Filter/Wash (°C)                            | 160                     |                          |    |       |       |       |
| Oxygen %                                                                  | 19.4                    |                          |    |       |       |       |
| Carbon Dioxide %                                                          | 0.30                    |                          |    |       |       |       |
| Moisture (%)                                                              | 1.10                    |                          |    |       |       |       |
| Litres sampled                                                            | 1378                    |                          |    |       |       |       |
| Corrected volume sampled - STP (m³)                                       | 1.264                   |                          |    |       |       |       |
| Blank Filter Run weight gain (mg)                                         | 0.0                     | 010 Blan<br>Concent      |    |       |       | 0.008 |
| Blank Wash Run weight gain (mg)                                           | 0.0                     | 050 (mg/m                |    |       |       | 0.040 |
| Weighing uncertainty of balance (mg)                                      | 0.078                   | This must be <5% of ELV  |    | ELV = | 10    | 0.5   |
| Overall Blank value (mg/m³)                                               | 0.047                   | This must be <10% of ELV |    | ELV=  | 10    | 1.0   |
| Particulate weight collected on filter (mg)                               | 3.39                    |                          |    |       |       |       |
| Particulate weight collected in Wash (mg)                                 | 1.40                    |                          |    |       |       |       |
| Total Particulate weight collected (mg)                                   | 4.79                    |                          |    |       |       |       |
| Total Particulate Concentration, dry gas at STP (mg/m³)                   | 3.79                    |                          |    |       |       |       |
| Total Particulate Concentration, wet gas at STP (mg/m³)                   | 3.75                    |                          |    |       |       |       |
| Total Particulate Concentration corrected for 11% Oxygen, dry gas (mg/m³) | N/A                     |                          |    |       |       |       |
| Total Particulate Mass Emission (kg/hour)                                 | 0.07                    |                          |    |       |       |       |

