

Element Materials Technology, Unit C6, Emery Court, The Embankment Business Park, Heaton Mersey, Stockport, SK4 3GL
Your Element Contact: James Eldridge (07826 916 684)
E: james.eldridge@element.com

Stack Emissions Testing Report Commissioned by

Meggit Aircraft Braking Systems

Installation Name & Address

Meggit Aircraft Braking Systems
Holbrook Lane
Coventry
West Midlands
CV6 4AA

PPC Permit: PPC/156

Stack Reference

Plating Shop Main Stack

Dates of the Monitoring Campaign

15th January 2020

Job Reference Number

EST-5399

Report	Written	by
--------	---------	----

Danny Pryke Team Leader MCERTS Level 2 MM 03 163 TE1 TE2 TE3 TE4

Report Approved by

Michelle Edwards
Team Leader
MCERTS Level 2
MM 05 659
TE1 TE2 TE3 TE4

Report Date

11th February 2020

Version

Version 1

Signature of Report Approver

CONTENTS

TITLE PAGE

CONTENTS

EXECUTIVE SUMMARY

Monitoring Objectives	3
Monitoring Results	4
Monitoring Dates & Times	5
Process Details	6
Monitoring & Analytical Methods	7
Summary of Sampling Deviations	7
Sampling Location	8
Plant Photos / Sample Points	9

APPENDIX 1 - Monitoring Personnel & List of Equipment

APPENDIX 2 - Raw Data, Sampling Equations & Charts

Opinions and interpretations expressed herein are outside the scope of Element's ISO 17025 accreditation.

This test report shall not be reproduced, except in full, without the written approval of Element.

(Page 1 of 7)

MONITORING OBJECTIVES

Meggit Aircraft Braking Systems, Coventry
Plating Shop Main Stack
15th January 2020

Overall Aim of the Monitoring Campaign

Element were commissioned by Meggit Aircraft Braking Systems to carry out stack emissions testing on the Plating Shop Main Stack at Coventry.

The aim of the monitoring campaign was to demonstrate compliance with a set of emission limit values (ELVs) as specified in the Site's Permit.

Special Requirements

There were no special requirements.

Target Parameters

Hydrogen Fluoride, Total Oxides of Nitrogen

(Page 2 of 7)

MONITORING RESULTS

Meggit Aircraft Braking Systems, Coventry
Plating Shop Main Stack
15th January 2020

where MU = Measurement Uncertainty associated with the Result

	Concentration					Mass Emission			
Parameter	Units	Result	MU	Limit		Units	Result	MU	Limit
			+/-					+/-	
Hydrogen Fluoride 1	mg/m³	< 0.04	0.002	5		g/hr	< 1.8	0.25	-
Total Oxides of Nitrogen	mg/m³	52.8	15.9	200		g/hr	2651	857	-
Water Vapour	% v/v	1.4	0.50						
Stack Gas Temperature	°C	20.5							
Stack Gas Velocity	m/s	8.6	0.95						
Volumetric Flow Rate (ACTUAL)	m³/hr	54492	6506						
Volumetric Flow Rate (REF)	m³/hr	50166	5989						

NOTE: VOLUMETRIC FLOW RATE & VELOCITY DATA TAKEN FROM THE PRELIMINARY VELOCITY TRAVERSE.

¹ Reference Conditions (REF) are: 273K, 101.3kPa, without correction for water vapour content.

(Page 3 of 7)

MONITORING DATE(S) & TIMES

Meggit Aircraft Braking Systems, Coventry
Plating Shop Main Stack
15th January 2020

Parameter		Units	Concentration	Units	Mass Emission	Sampling	Sampling	Duration
						Date(s)	Times	mins
Hydrogen Fluoride	R1	mg/m³	< 0.04	g/hr	< 1.8	15/01/2020	11:30 - 12:30	60
Total Oxides of Nitrogen	R1	mg/m³	52.8	g/hr	2651	15/01/2020	11:30 - 12:30	60
Velocity Traverse	R1					15/01/2020	10:32 - 10:55	

All results are expressed at the respective reference conditions.

Meggit Aircraft Braking Systems Coventry Plating Shop Main Stack Job Number: EST-5399, Version 1 Sample Date/s: 15th January 2020 PPC Permit: PPC/156

(Page 4 of 7)

PROCESS DETAILS

Meggit Aircraft Braking Systems, Coventry
Plating Shop Main Stack
15th January 2020

Standard Operating Conditions

Parameter	Value
Process Status	Normal Operation
Capacity (of 100%) and Tonnes / Hour	Standard Operating Capacity
Continuous or Batch Process	Continuous Batch
Feedstock (if applicable)	Braking Systems (See below)
Abatement System	None
Abatement System Running Status	N/A
Fuel	N/A
Plume Appearance	None Visible

Site Specific Operating Conditions

Parameter	Status			
Surface Treatment 1	Passivation (PRO 227) - Parts In Nitric VAT			
Surface Treatment 2	Sulphuric Anodise - Parts In Sulphuric Vat			
Surface Treatment 3	Pickle (Pro375) - Parts in Deoxidiser			

(Page 5 of 7)

MONITORING & ANALYTICAL METHODS

Meggit Aircraft Braking Systems, Coventry
Plating Shop Main Stack
15th January 2020

		Monitoring				Analysis					
Parameter	Standard	Technical Procedure	ISO 17025 Testing	Testing Lab	Analytical Procedure	Analytical Technique	ISO 17025 Analysis	Lab	MCERTS Testing	LOD (Average)	
Hydrogen Fluoride	ISO 15713	CAT-TP-10	Yes	EET	CAT-AP-01	IC	Yes	EET	Yes	0.036 mg/m ³	
Total Oxides of Nitrogen	US EPA M7D	CAT-TP-35	Yes	EET	C27	IC	Yes	RPS	Yes	6.525 mg/m ³	
Water Vapour	EN 14790	CAT-TP-05	Yes	EET	CAT-TP-05	Gravimetric	Yes	EET	Yes	0.1 % v/v	
Velocity & Vol. Flow Rate	EN 16911-1 (MID)	CAT-TP-41	Yes	EET	Pitot Tube and Thermocouple			Yes	1.8 m/s		

ANALYSIS LABORATORIES

(with short name reference as appears in the table above)

Element Stockport (EET)	ISO 17025 Accreditation Number: 4279
RPS Laboratories Ltd (RPS)	ISO 17025 Accreditation Number: 0605

SUMMARY OF SAMPLING DEVIATIONS

Parameter	Run	Deviation
Total Oxides of Nitrogen	1	The measurement uncertainty for water vapour was greater than 20%. This was due to the low level of water vapour which was found to be present in the stack.
Total Oxides of Nitrogen	1 1	The blank result was higher than 10% of the ELV, however it should be noted that the results were of an extremely low order. [50 - 75% higher]

Meggit Aircraft Braking Systems Coventry Plating Shop Main Stack Job Number: EST-5399, Version 1 Sample Date/s: 15th January 2020 PPC Permit: PPC/156

(Page 6 of 7)

SUITABILITY OF SAMPLING LOCATION

Duct Characteristics

Parameter	Units	Value
Туре	-	Circular
Depth	m	1.50
Width	m	-
Area	m²	1.77
Port Depth	cm	9
Orientation of Duct	-	Angled
Number of Ports	-	2
Sample Port Size	-	4" BSP

Location of Sampling Platform

General Platform Information	Value
Permanent / Temporary Platform	Permanent
Inside / Outside	Outside

Platform Details

EA Technical Guidance Note M1 / EN 15259 Platform Requirements	Value
Sufficient working area to manipulate probe and operate the measuring instruments	Yes
Platform has 2 levels of handrails (approx. 0.5m & 1.0m high)	Yes
Platform has vertical base boards (approx. 0.25m high)	Yes
Platform has chains / self closing gates at top of ladders	Yes
There are no obstructions present which hamper insertion of sampling equipment	Yes
Safe Access Available	Yes
Easy Access Available	Yes

Sampling Location / Platform Improvement Recommendations

Although this platform does not meet the requirements in the Environment Agency's Technical Guidance Note M1 and EN 15259, it is adequate for the testing carried out on this stack.

EN 15259 Homogeneity Test Requirements

There is no requirement to perform a EN 15259 Homogeneity Test on this Stack.

Sampling Plane Validation Criteria (from EN 15259)

Criteria in EN 15259	Units	Traverse 1
Lowest Differential Pressure	Pa	24.5
Mean Velocity	m/s	8.56
Lowest Gas Velocity	m/s	5.35
Highest Gas Velocity	m/s	12.17
Ratio of Above	:1	2.28
Maximum Angle of Swirl	0	NM
No Local Negative Flow	-	Yes

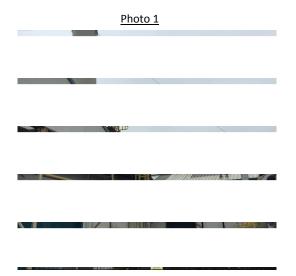
Where NM = Not Measured as no Isokinetic sampling was performed.

element

Executive Summary

(Page 7 of 7)

PLANT PHOTOS



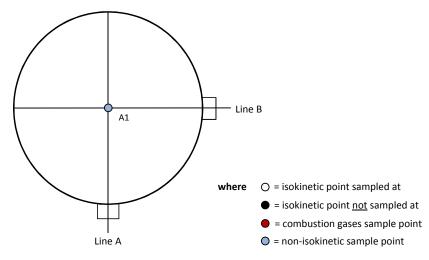

Photo 3

Photo 4

SAMPLE POINTS

APPENDIX CONTENTS

APPENDIX 1 - Stack Emissions Monitoring Personnel, List of Equipment & Methods and Technical Procedures Used

APPENDIX 2 - Summaries, Calculations, Raw Data and Charts

STACK EMISSIONS MONITORING PERSONNEL

Position	Name	MCERTS Accreditation	MCERTS Number	Technical Endorsements
Team Leader	Danny Pryke	MCERTS Level 2	MM 03 163	TE1 TE2 TE3 TE4
Trainee	Chris Whitley	MCERTS Trainee	MM 19 1543	None

LIST OF EQUIPMENT

Extractive Sampling			
Equipment Type	Equipment I.D.		
Control Box DGM (1)	CAT 7.62		
Control Box DGM (2)	-		
Box Thermocouples (1)	CAT 3.132		
Box Thermocouples (2)	-		
Umbilical (1)	CAT 3.132		
Umbilical (2)	-		
Oven Box (1)	CAT 12.78		
Oven Box (2)	-		
Heated Probe (1)	CAT 5.133		
Heated Probe (2)	-		
Heated Probe (3)	-		
S-Pitot (1)	CAT 21B.116		
S-Pitot (2)	-		
L-Pitot	-		
Site Balance	CAT 17.26		
500g / 1Kg Check Weights	CAT 17.26		
Last Impinger Arm	CAT 4.839		
Callipers	CAT 23.27		
Tubes Kit Thermocouple	-		

Instrumental Analysers				
Equipment Type	Equipment I.D.			
Horiba PG-250	-			
Horiba PG-250 SRM	-			
Servomex 4900	-			
Eco Physics CLD 822Mh	-			
ABB AO2020-URAS26	-			
Testo 350 XL	-			
JCT JCC P1 Cooler	-			
ProtIR 204M	-			
Gasmet Sampling System	-			
Bernath 3006 FID	-			
M&C PSS	-			
Mass Flow Controller (1)	-			
Mass Flow Controller (2)	-			
Mass View (1)	CAT DP			
Mass View (2)	CAT DP			
Hioki 5043 (V)	-			
Hioki 5031 (mA)	-			
Bioaerosols Temperature Logger	-			
Electronic Refrigerator	-			

Miscellaneous Items		
Equipment Type	Equipment I.D.	
Digital Manometer (1)	-	
Digital Manometer (2)	-	
Digital Temperature Meter	-	
Stopwatch	-	
Barometer	-	
Stack Thermocouple (1)	CAT 4.103	
Stack Thermocouple (2)	-	
Stack Thermocouple (3)	-	
1m Heated Line (1)	-	
1m Heated Line (2)	-	
1m Heated Line (3)	-	
5m Heated Line (1)	-	
15m Heated Line (1)	-	
20m Heated Line (1)	-	
20m Heated Line (2)	-	
Dual Channel Heater Controller	-	
Single Channel Heater Controller	-	
Laboratory Balance		
Tape Measure	CAT 17.22	

METHODS & TECHNICAL PROCEDURES USED

Parameter	Standard	Technical Procedure	
Hydrogen Fluoride	ISO 15713	CAT-TP-10	
Total Oxides of Nitrogen	US EPA M7D	CAT-TP-35	
Water Vapour	EN 14790	CAT-TP-05	
Velocity & Vol. Flow Rate	EN 16911-1 (MID)	CAT-TP-41	

PRELIMINARY STACK SURVEY: CALCULATIONS

General Stack Details

Stack Details (from Traverse)	Units	Value
Stack Diameter / Depth, D	m	1.50
Stack Width, W	m	-
Stack Area, A	m²	1.77
Average Stack Gas Temperature, T _a	°C	20.5
Average Stack Gas Pressure	mmH₂O	6.9
Average Stack Static Pressure, P _{static}	kPa	0.060
Average Barometric Pressure, P _b	kPa	100.2
Average Pitot Tube Calibration Coefficient, C _p	-	0.83

Stack Gas Composition & Molecular Weights

Component		Conc	Conc	Conc	Volume	Molar	Density	Conc
		ppm	Dry	Wet	Fraction	Mass	kg/m³	kg/m³
			% v/v	% v/v	r	М	р	p _i
CO ₂	(Estimated)	-	0.06	0.06	0.0006	44.01	1.9635	0.00118
O ₂	(Estimated)	-	20.80	20.51	0.2080	32.00	1.4277	0.29696
N ₂		-	79.14	78.05	0.7914	28.01	1.2498	0.98913
Moisture (H₂O)		-	-	1.38	0.0138	18.02	0.8037	0.01111

Where: p = M / 22.41

 $p_i = r x p$

Calculation of Stack Gas Densities

Determinand	Units	Result
Dry Density (STP), P STD	kg/m³	1.287
7 7 7 7 3.5	<u> </u>	
Wet Density (STP), P STW	kg/m³	1.281
Dry Density (Actual), P Actual	kg/m³	1.185
Average Wet Density (Actual), P ActualW	kg/m³	1.179

Where:

 P_{STD} = sum of component concentrations, kg/m³ (not including water vapour)

 P_{STW} = sum of all wet concentrations / 100 x density, kg/m³ (including water vapour)

 $P_{Actual} = P_{STD} x (T_{STP} / (P_{STP})) x ((P_{static} + P_b) / T_a)$

 $P_{ActualW}$ (at each sampling point) = P_{STW} x (T_s / P_s) x (P_a / T_a)

Calculation of Stack Gas Volumetric Flowrate, Q

Duct gas flow conditions	Units	Actual	REF 1	
Temperature	°C	20.5	0.0	
Total Pressure	kPa	100.3	101.3	
Moisture	%	1.38	1.38	

Gas Volumetric Flowrate (from Traverse)	Units	Result
Gas Volumetric Flowrate (Actual)	m³/hr	54492
Gas Volumetric Flowrate (STP, Wet)	m³/hr	50166
Gas Volumetric Flowrate (STP, Dry)	m³/hr	49472
Gas Volumetric Flowrate REF ¹	m³/hr	50166

PRELIMINARY STACK SURVEY: VELOCITY TRAVERSE TO EN 16911-1 (MID)

(1 of 1)

Parameter		Units	Value
Data of Company			15/01/2020
Date of Survey		_	15/01/2020
Time of Survey		-	10:32 - 10:55
Atmospheric Pres	sure	kPa	100.2
Average Stack Static Pressure		Pa	60
Result of Pitot Sta	gnation Test	-	Pass
Are Water Droplets Present?		-	Yes
Device Used	S-Type Pitot	with Liau	id Incline Manometer

Parameter	Units	Value
Initial Pitot Leak Check	-	Pass
Final Pitot Leak Check	-	Pass
Orientation of Duct	-	Angled
Pitot Tube, C _p	-	0.83
Number of Lines Available	-	2
Number of Lines Used	-	2

			:	Sampling Line A	١			:	Sampling Line B	3	
Traverse	Depth	ΔΡ	Temp	Wet Density	Velocity	Swirl	ΔΡ	Temp	Wet Density	Velocity	Swirl
Point	m	mmH₂O	°C	kg/m³	m/s	•	mmH₂O	°C	kg/m³	m/s	۰
STATIC (Un	its: Pa)	60.0					60.0				
Mean		7.8	20.3	1.180	9.13		6.0	20.8	1.178	8.00	
1	0.10	13.0	20.0	1.181	12.17		10.5	21.0	1.177	10.96	
2	0.38	8.0	20.0	1.181	9.55		7.0	21.0	1.177	8.95	
3	1.13	7.0	21.0	1.177	8.95		4.0	20.0	1.181	6.75	
4	1.40	3.0	20.0	1.181	5.85		2.5	21.0	1.177	5.35	

PRELIMINARY STACK SURVEY: VELOCITY TRAVERSE TO EN 16911-1 (MID) - MEASUREMENT UNCERTAINTY

Performance characteristics (Uncertainty Components)	Uncertainty	Value	Units
Standard Uncertainty on the coefficient of the Pitot Tube	u(k)	0.005	-
Standard Uncertainty associated with the mean local dynamic pressures	u(<u>∆pi</u>)	1.821	Pa
- Resolution	u(res)	0.52154	
- Calibration	u(cal)	0.473	
- Drift	u(drift)	1.096	
- Lack of Fit	u(fit)	0.226	
- Overall corrections to dynamic measurements	u(Cf)	2.317	
Standard uncertainty associated with the molar mass of the gas	u(M)	0.00003	-
- φO ₂ ,w	-	20.512	
- φCO ₂ , w	-	0.059	
- Oxygen, dry	u(φO₂,d)	0.637	
- Carbon Dioxide, dry	u(φCO₂,d)	0.002	
- Water Vapour	u(φH₂O)	0.071	
- Oxygen, wet	u(φO₂,w)	0.628	
- Carbon Dioxide, wet	u(φCO₂,w)	0.002	
Standard uncertainty associated with the stack temperature	u(Tc)	1.497	K
Standard uncertainty associated with the absolute pressure in the duct	u(pc)	175.697	Pa
- Atmospheric Pressure	u(patm)	175.692	
- Static Pressure	u(<u>pstat</u>)	1.288	
Standard uncertainty associated with the density in the duct	u(ρ)	0.00636	-
Standard uncertainty associated with the local velocities	u(vi)	1.310	Pa
Standard uncertainty associated with the mean velocity	u(<u>v</u>)	0.483	m/s
Standard uncertainty associated with the mean velocity (95% Confidence)	Uc(v)	0.946	m/s
Standard uncertainty associated with the mean velocity (95% Confidence), relative	Uc,rel(v)	11.05	%
Standard uncertainty associated with the volume flow rate (95% Confidence)	Uc(qV,w)	6506.0	m³/hr
$-u^2(a)/a^2$	-	0.00053	
- u²(qV,w)/q²V,w	-	0.00371	
- u²(qV,w)	-	11018266	
- u(qV,w)	-	3319.4	
Standard uncertainty associated with the volume flow rate (95% Confidence), relative	Uc,rel(qV,w)	11.94	%

HYDROGEN FLUORIDE: RESULTS SUMMARY

Meggit Aircraft Braking Systems, Coventry
Plating Shop Main Stack

Sample Runs

Parameter	Units	Run 1
Concentration	mg/m³	< 0.036
Uncertainty	±mg/m³	0.002
Mass Emission	g/hr	< 1.82
Uncertainty	±g/hr	0.25

Parameter	Units	Run 1
Water Vapour	% v/v	1.48
Uncertainty	±% v/v	0.08

Blank Runs

General Sampling Information

Parameter	Value	
Standard	ISO 15713	
Technical Procedure	CAT-TP-10	
Name of Analytical Laboratory	EET	
Analytical Laboratory's Procedure	CAT-AP-01	
ISO 17025 Accredited Analysis?	Yes	
Date of Sample Analysis	20/01/2020	
Probe Material	Monel	
Filter Housing Material	Monel	
Impinger Material	Quartz Glass	
Absorption Solution	0.1 mol/l Sodium Hydroxide	
Positioning of Filter	In Stack	
Filter Size and Material	47mm Quartz Fibre	
Number of Sampling Lines Used	1/1	FOF
Number of Sampling Points Used	1/1	FOF
Sample Point I.D.'s	A1	

FORMAT: Number Used / Number Required FORMAT: Number Used / Number Required

Reference Conditions

Reference Conditions are: 273K, 101.3kPa, without correction for water vapour content.

HYDROGEN FLUORIDE: SAMPLING DETAILS

Sample Runs

Parameter	Units	Run 1
Sampling Times	-	11:30 - 12:30
Sampling Dates	-	15/01/2020
Sampling Device	-	MFC / MV
Duration	mins	60
Volume Sampled (STP, Dry)	m³	0.5297
Volume Sampled (STP, Wet)	m³	0.5377
Volume Sampled (REF)	m³	0.5377
Sample Flow Rate	l/min	8.83
Laboratory Result for Front Impingers	μg/ml	< 0.05
Laboratory Result for Back Impinger	μg/ml	< 0.05
Volume in Front Impingers	ml	288.4
Volume in Back Impinger	ml	102.8
Mass in Front Impingers	μg	< 14.4
Mass in Back Impinger	μg	< 5.1
Total Mass Collected	μg	< 19.6
Calculated Concentration	mg/m³	< 0.04
Liquid Trap Start Mass	g	1236.5
Liquid Trap End Mass	g	1239.8
Silica Trap Start Mass	g	520.9
Silica Trap End Mass	g	524.0
Total Mass Of Water Vapour	g	6.4
Calculated Water Vapour	% v/v	1.48

Where: MFC stands for Mass Flow Controller, MV stands for Mass View Flowmeter

Blank Runs

Parameter	Units	Blank 1
Blank Dates	-	15/01/2020
Average Volume Sampled (REF)	m³	0.5377
Laboratory Result for Impingers	μg/ml	< 0.05
Volume in Impingers	ml	318.4
Total Mass Collected	μg	< 15.9
Calculated Concentration	mg/m³	< 0.03

HYDROGEN FLUORIDE: QUALITY ASSURANCE

Sample Runs

Leak Test Results	Units	Run 1
Mean Sampling Rate	l/min	8.8
Pre-Sampling Leak Rate	l/min	0.05
Post-Sampling Leak Rate	l/min	0.08
Allowable Leak Rate	l/min	0.18
Leak Test Acceptable	-	Yes
Absorption Efficiency	Units	Run 1
Absorption Efficiency	%	100.0
Allowable Absorption Efficiency	%	N/A ²
Absorption Efficiency Acceptable	-	Yes ²
² The concentration is less than 30% of the EL		
Water Droplets	Units	Run 1
Are Water Droplets Present	-	No
MU (Concurrent Water Vapour)	Units	Run 1
(concurrent water vapour)	Oilits	Kull 1
Measurement Uncertainty (MU)	%	5.4
Allowable MU	%	20.0
MU Acceptable	%	Yes
Silica Gel (Concurrent Water Vapour)	Units	Run 1
Less than 50% Faded	%	Yes
Test Conditions	Units	Run 1
Ambient Temperature Recorded?	-	Yes

Blank Runs

Leak Test Results	Units	Blank 1
Expected Sampling Rate	I/min	9.5
	1/111111	9.5
Pre-Sampling Leak Rate	l/min	0.05
Post-Sampling Leak Rate	l/min	0.07
Allowable Leak Rate	l/min	0.19
Leak Test Acceptable	-	Yes
Validity of Blank vs ELV	Units	Blank 1

Validity of Blank vs ELV	Units	Blank 1
Allowable Blank	mg/m³	0.5
Blank Acceptable	-	Yes

Method Deviations

Nature of Deviation	Run Number
(x = deviation applies to the associated run, wx = deviation also applies to the concurrent water vapour run)	1
There are no deviations associated with the sampling employed.	wx

HYDROGEN FLUORIDE: MEASUREMENT UNCERTAINTY CALCULATIONS

			Value				Stand
Measured Quantities	Symbol	Run 1		Symb	ol	Units	Run 1
Sampled Volume (STP)	V _m	0.5297		uV _r		m³	0.0106
Leak	L	0.91		uL	Т	%	-
Laboratory Result	L _r	2.65		uL,	Т	%	-

		Unce	ertainty as a Percentage	
Measured Quantities	Units	Run 1		Requirement of Standard
Sampled Volume (STP)	%	2.00		≤2%
Leak	%	0.91		≤2%
Laboratory Result	%	2.65		No Requirement

		Und	ertainty	n Measurement Units		Sensitivity Coefficient
Measured Quantities	Symbol	Units	Run 1		Run 1	
Sampled Volume (STP)	V _m	m³	0.5297		0.07	
.eak	L	mg/m³	0.000		1.00	
_aboratory Result	L _r	mg/m³	0.001		1.00	

		U
Measured Quantities	Units	Run 1
Sampled Volume (STP)	mg/m³	0.001
Leak	mg/m³	0.0002
Laboratory Result	mg/m³	0.0010

	(Oxygen C
Measured Quantities	Units	Run 1
O₂ Correction Factor	-	N/A
Stack Gas O₂ Content	% v/v	N/A
MU for O₂ Correction	-	N/A
Overall MU For O ₂ Measurement	%	N/A

Parameter	Units	Run 1
Combined uncertainty	mg/m³	0.00
Expanded uncertainty (95% confidence), without Oxygen Correction	mg/m³	0.00
Expanded uncertainty (95% confidence), with Oxygen Correction	mg/m³	N/A
Expanded uncertainty (95% confidence), estimated with Method Deviations	mg/m³	0.00
Reported Uncertainty	mg/m³	0.00
Expanded uncertainty (95% confidence), without Oxygen Correction	%	6.6
Expanded uncertainty (95% confidence), with Oxygen Correction	%	N/A
Expanded uncertainty (95% confidence), estimated with Method Deviations	%	6.6
Reported Uncertainty	%	6.6

Meggit Aircraft Braking Systems Coventry Plating Shop Main Stack Job Number: EST-5399, Version 1 Sample Date/s: 15th January 2020 PPC Permit: PPC/156

TOTAL OXIDES OF NITROGEN: RESULTS SUMMARY

Meggit Aircraft Braking Systems, Coventry
Plating Shop Main Stack

Sample Runs

Parameter	Units	Run 1
Concentration	mg/m³	52.8
Uncertainty	±mg/m³	15.9
Mass Emission	g/hr	2651
Uncertainty	±g/hr	857

neter	Units	Run 1	
· Vapour	% v/v	1.3	
ainty	±% v/v	0.92	

Blank Runs

General Sampling Information

Value]
US EPA M7D	1
CAT-TP-35	1
RPS	1
C27	1
Yes	1
29/01/2020	1
Titanium	1
Titanium	1
Quartz Glass	1
Potassium Permanganate Solution]
In Stack	1
47mm Quartz Fibre	1
1/1	F
1/1	F
A1	
	US EPA M7D CAT-TP-35 RPS C27 Yes 29/01/2020 Titanium Titanium Quartz Glass Potassium Permanganate Solution In Stack 47mm Quartz Fibre 1/1 1/1

FORMAT: Number Used / Number Required FORMAT: Number Used / Number Required

Reference Conditions

Reference Conditions are: 273K, 101.3kPa, without correction for water vapour content.

TOTAL OXIDES OF NITROGEN: SAMPLING DETAILS

Sample Runs

Parameter	Units	Run 1
Sampling Times	-	11:30 - 12:30
Sampling Dates	-	15/01/2020
Sampling Device	-	MFC / MV
Duration	mins	60
Volume Sampled (STP, Dry)	m³	0.0288
Volume Sampled (STP, Wet)	m³	0.0292
Volume Sampled (REF)	m³	0.0292
Sample Flow Rate	l/min	0.48
Laboratory Result for Front Impingers	μg/ml	2.00
Laboratory Result for Back Impinger	μg/ml	2.18
Volume in Front Impingers	ml	656.6
Volume in Back Impinger	ml	104.3
Mass in Front Impingers	μg	1313.2
Mass in Back Impinger	μg	227.4
Total Mass Collected	μg	1540.6
Calculated Concentration	mg/m³	52.85
Liquid Trap Start Mass	g	2290.9
Liquid Trap End Mass	g	2291.1
Silica Trap Start Mass	g	890.4
Silica Trap End Mass	g	890.5
Total Mass Of Water Vapour	g	0.3
Calculated Water Vapour	% v/v	1.28

Where: MFC stands for Mass Flow Controller, MV stands for Mass View Flowmeter

Blank Runs

Parameter	Units	Blank 1
Blank Dates	-	15/01/2020
Average Volume Sampled (REF)	m³	0.0292
Laboratory Result for Impingers	μg/ml	1.65
Volume in Impingers	ml	819.4
Total Mass Collected	μg	1352.0
Calculated Concentration	mg/m³	46.38

TOTAL OXIDES OF NITROGEN: QUALITY ASSURANCE

Sample Runs

Leak Test Results	Units	Run 1
Mean Sampling Rate	l/min	0.5
Pre-Sampling Leak Rate	l/min	0.01
Post-Sampling Leak Rate	l/min	0.01
Allowable Leak Rate	l/min	0.01
Leak Test Acceptable	-	Yes
Absorption Efficiency	Units	Run 1
Absorption Efficiency	%	85.2
Allowable Absorption Efficiency	%	N/A
Absorption Efficiency Acceptable	-	N/A
Water Droplets	Units	Run 1
Are Water Droplets Present	-	No
MU (Concurrent Water Vapour)	Units	Run 1
Measurement Uncertainty (MU)	%	72.0
Allowable MU	%	20.0
MU Acceptable	%	No
Silica Gel (Concurrent Water Vapour)	Units	Run 1
Less than 50% Faded	%	Yes
Test Conditions	Units	Run 1
Ambient Temperature Recorded?	-	Yes

Blank Runs

Leak Test Results	Units	Blank 1
Expected Sampling Rate	I/min	0.5
Pre-Sampling Leak Rate	l/min	0.01
Post-Sampling Leak Rate	l/min	0.01
Allowable Leak Rate	l/min	0.01
Leak Test Acceptable	-	Yes
Validity of Blank vs ELV	Units	Blank 1
validity of blank vs LLV	Offics	Dialik 1
Allowable Blank	mg/m³	20.0

Method Deviations

Blank Acceptable

Nature of Deviation		Run Number
(x = deviation applies to the associated run, wx = deviation also applies to the concurrent water vapour run)	1	
The measurement uncertainty for water vapour was greater than 20%. This was due to the low level of water vapour which was found to be present in the stack.	wx	
The blank result was higher than 10% of the ELV, however it should be noted that the results were of an extremely low order. [50 - 75% higher]	х	

TOTAL OXIDES OF NITROGEN: MEASUREMENT UNCERTAINTY CALCULATIONS

			Value			Stand
Measured Quantities	Symbol	Run 1		Symbol	Units	Run 1
Sampled Volume (STP)	V _m	0.0288		uV _m	m³	0.0006
Leak	L	1.25		uL	%	-
Laboratory Result	L _r	10.00		uL _r	%	-

		Unce	ertainty as a Percentage	
Measured Quantities	Units	Run 1		Requirement of Standard
Sampled Volume (STP)	%	2.00		≤2%
Leak	%	1.25		≤2%
Laboratory Result	%	10.00		No Requirement

		Unc	ertainty	n Measurement Units		Sensitivity Coefficient
Measured Quantities	Symbol	Units	Run 1		Run 1	
Sampled Volume (STP)	V _m	m³	0.0288		1836.44	
Leak	L	mg/m³	0.382		1.00	
Laboratory Result	L _r	mg/m³	5.285		1.00	

		U
Measured Quantities	Units	Run 1
Sampled Volume (STP)	mg/m³	1.057
Leak	mg/m³	0.3818
Laboratory Result	mg/m³	5.2848

	(Oxygen C
Measured Quantities	Units	Run 1
O₂ Correction Factor	-	N/A
Stack Gas O₂ Content	% v/v	N/A
MU for O₂ Correction	-	N/A
Overall MU For O ₂ Measurement	%	N/A

Parameter	Units	Run 1
Combined uncertainty	mg/m³	5.40
Expanded uncertainty (95% confidence), without Oxygen Correction	mg/m³	10.59
Expanded uncertainty (95% confidence), with Oxygen Correction	mg/m³	N/A
Expanded uncertainty (95% confidence), estimated with Method Deviations	mg/m³	15.88
Reported Uncertainty	mg/m³	15.88
Expanded uncertainty (95% confidence), without Oxygen Correction	%	20.0
Expanded uncertainty (95% confidence), with Oxygen Correction	%	N/A
Expanded uncertainty (95% confidence), estimated with Method Deviations	%	30.1
Reported Uncertainty	%	30.1

Meggit Aircraft Braking Systems Coventry Plating Shop Main Stack Job Number: EST-5399, Version 1 Sample Date/s: 15th January 2020 PPC Permit: PPC/156