19 4/1095

Report for the Periodic Monitoring of Emissions to Air

Part 1. Executive Summary

mcert.

Permit Number:

PPC/156

Operator:

Meggitt Aircraft Braking Systems

1506

Installation:

Coventry Site

Monitoring Date:

03 March 2010

E.E. Report Ref.:

42732

Client Name:

Meggitt Aircraft Braking Systems

Client Address:

Holbrook Lane

Coventry

West Midlands CV6 4AA

Monitoring Organisation:

Environmental Evaluation Ltd. (Head Office)

Lawton Square

Delph Oldham OL3 5DT

Date of Report:

17 March 2010

Report Written by:

S White

Function:

Trainee

Report Approved By:

T Ledwith

MCERTS Registration No.:

MM 03 425

Technical Endorsements:

TE1, TE2, TE3, TE4

Signed:

Installation: Coventry Site

Contents

Part 1. Executive Summary

1.1	Monitoring Objectives	3
1.2	Monitoring Results	4
1.3	Operating Information	4
1.4	Monitoring Deviations	4
	Part 2. Supporting Information	
	Appendix A: General Information	
A 1	Environmental Evaluation Limited Staff Details	6
A2	Environmental Evaluation Limited Method Details	6
A3	Sub-Contract	6
A4	Equipment Used in the Monitoring Campaign	6
	Appendix B: Emission Information	
B 1	Plating Area Main Stack Information	
B1.1	Diagrams Showing the Dimensions and Monitoring Facilities	7
B1.2	Preliminary Velocity and Temperature Measurement	7
B1.3	Combustion Gases	8
B1.4	Gaseous Fluorides to BS ISO 15713:2006	12
	Homogeneity Test	15
	Test Certificates	16

Installation: Coventry Site

Environmental Evaluation Limited EE. Reference number: 42732

1 Part 1: Executive Summary

1.1 Monitoring Objectives

Meggitt Aircraft Braking Systems has been authorised under the Environmental Protection Act and associated legislation to operate various processes at their Coventry Site site, and a condition of that authorisation is that emission monitoring is undertaken on a regular basis to prove compliance or otherwise against prescribed emission limit values.

This report details the testing undertaken in:

March 2010

The substance monitoring requirements for each emission point are detailed below.

Substances	Emission Point Identification
Monitored	Plating Area Main Stack
Flow	✓
Temperature	✓
Oxides of Nitrogen	√
Fluorides	7

Date 17/03/2010 Version No.1 Page 3 of 20

Environmental Evaluation Limited EE. Reference number: 42732

Installation: Coventry Site

2 Monitoring Results

	Normal	Normal
A Secoliarina for use of Method	UKAS MCERTS	UKAS MCERTS
Monitoring Method Reference	BS-EN 14792:2005	14.33 - 15.03 BS ISO 15713:2006 UKAS MCERTS
	11:30 - 12:00	14:33 - 15:03
E STATE OF THE STA	03/03/2010	03/03/2010
Reference Conditions	273K and 101.3 kPa/No Oxygen Correction, Dry Basis	273K and 101.3 kPa, No Oxygen Correction, Dry Basis
Units	mgm ⁻³	mgm ⁻³
Uncertainty	± 33.4	± 0.1
Periodic Monitoring Result	1.2	1.4
Emission Limit Value	400	01
Substance to be Monitored	Oxides of Nitrogen	Fluorides
Point	Plating Area Main Stack	Plating Area Main Stack

1.3 Operating Information

	D. W.		
Abatement	One large and one smaller wet	scrubber systems	
Rectsfacil	Metal parts to be	plated	
Process Duration	Batch		
Process Type	Metal Plating Process		
	03 March 2010		
Emission Point Reference	Plating Area Main Stack		

1.4 Monitoring Deviations

Other Relevant Issues	Homogeneity test was carried out for Nox	
Monitoring Deviations	The blank for fluorides was slightly above 10% of the	Emission Limit Value at 1.1mgm ⁻³ .
Substance Deviations	None	The second secon
Emission Point Reference	Plating Area Main Stack	

nowal genabry

Moraday of the property

Min Red OS malmin to loak

Version No.1

Report for the Periodic Monitoring of Emissions to Air

Part 2. Supporting Information

Permit Number:

PPC/156

Operator:

Meggitt Aircraft Braking Systems

Installation:

Coventry Site

Monitoring Date:

03 March 2010

E.E. Report Ref.:

42732

Client Name:

Meggitt Aircraft Braking Systems

Client Address:

Holbrook Lane

Coventry

West Midlands CV6 4AA

Monitoring Organisation:

Environmental Evaluation Ltd. (Head Office)

Lawton Square

Delph Oldham OL3 5DT

Date of Report:

17 March 2010

Report Written by:

S White

Function:

Trainee

Report Approved By:

T Ledwith

MCERTS Registration No.:

MM 03 425

Technical Endorsements:

TE1, TE2, TE3, TE4

Signed:

Installation: Coventry Site

APPENDICES

Environmental Evaluation Limited EE. Reference number: 42732

Appendix A: General Information

A1. Environmental Evaluation Limited Staff Details

Team Leader:

T Ledwith

MCERTS No.

MM 03 425

Certification Level:

MCERTS Level 2

Technical Endorsements:

TE1, TE2, TE3, TE4

Site Technician:

S White

MCERTS No.

MM 06 776

Certification Level:

MCERTS Level 1

Technical Endorsements:

TE1

A2. Environmental Evaluation Limited Method Details

The indicated substances were measured by the standards and in house methods specified in the table below:

Substance	Standard	EE. Reference
Flow	BS EN 13284:2002	EE/P/002 & 2a
Temperature	BS EN 13284:2002	EE/P/002 & 2a
Oxides of Nitrogen	BS EN 14792:2005	EE/P/009
Fluorides	BS ISO 15713:2006	EE/P/017

A3. Sub-Contract

Analysis was subcontracted to a UKAS accredited laboratory.

A4. Equipment Used in the Monitoring Campaign

Equipment checklists appropriate to the methods were used.

Equipment Type	EE Equipment Reference Code
Gas Meter	LCL 44
Combustion Gas Analyser	LCL 20 1M L Type
Manometer	LCL 26
Thermosensor	LCL 15
Thermocouple	LCL 17
Tape Measure	LCL 18
Barometer	LCL 23
Vernier Callipers	LCL 14
Stop Watch	LCL 25
Combustion Gas Analyser	LCL 52
Combustion Gas Analyser	B01

Installation: Coventry Site

Appendix B: Emission Information

B1 - Plating Area Main Stack Information

B1.1 Diagrams Showing the Dimensions and Monitoring Facilities of Plating Area Main Stack

B1.2 Preliminary Velocity and Temperature Measurement of Plating Area Main Stack

Traverse	raverse Sample Line A		Sa	mple Line	:В —	Sample Line C			Sample line D			
Point	Stack Temp. (°C)	ΔP (mmH2O)	Swirl Angle (o)	Stack Temp. (°C)	ΔP (mmH2O)	Swirl Angle (o)	Stack Temp. (°C)	ΔP (mmH2O)	Swirl Angle (o)	Stack Temp, (°C)	ΔP (mmH2O)	Swirl Angle (0)
- 1	19	90	0	19	96	0						
2	19	92	0	19	101	0						
- 3	19	103	0	19	116	0						
4	19	118	0	19	119	0						
5	19	116	0	19	124	0						
- 6	19	114	0	19	124	0						
7	19	115	0	19	122	0						
8	19	116	0	19	124	0						
- 9	19	112	0	19	121	0						
10	19	109	0	19	119	0						
	$\Sigma \Delta P_A$	1085		$\Sigma \Delta P_{ m B}$	1166		$-\Sigma \Delta P_{C}$			$\Sigma\Delta P_{\mathrm{D}}$		•

Barometric Pressure (mmHg)	755	Port Depth (mm)	100
Static Pressure (mmH ₂ O)	1.63	Port Seal Adaptor Depth (mm)	
Diameter (m)	1.50	Assumed CO ₂ (%)	0.0
		Assumed O ₂ (%)	20.9
Stack Area (m²)	1.767	Assumed CO (%)	0.0
Port Size (mm)	110	Assumed H ₂ O (%)	0.0

Installation: Coventry Site

Environmental Evaluation Limited

EE. Reference number: 42732

Appendix B1.3 - Combustion Gases - Plating Area Main Stack

mpany		Meggitt Ai	rcraft Bral	ing System	Test Conc	ireted by	T Ledwith	& S White	;
	1.0	Coventry S	Site		Date_of Tr	est .	03 March	2010	
intildentification	1	Plating Ar	ea Main St	ack	William Parme				
inice of Measur	rement Ra	nge and S	pan Gas	Concentra	Repeatability	Ideal	Actual	I	
		ELV	ELV	2% of ELV		Analyser	Analyser	Ideal	Span
Parameter	7	mgm ⁻³	ppm	ppm	ppm	Range	Range		Conc.
NOx		400	194.8	3.9	2.5	292	500	250	- 450
SO ₂	***			,,,,,,,					
CO									
CO ₂					-				
O ₂		20.9		0.418	0.125	31.35	25	12.5	- 22.5
naliyser:and.Sys	tem, Zero	and Span	Cliceks						
						Time	10:57	Time	13:02
	Actual	Actual	4 1	À 1	Analyser	Pre Test	Pre-Test	Post Test	Post Tes
Parameter	Zero Gas	Span Gas	Analyser Zero	Analyser Span	Zero	System	System	System	System
	Value	Value	Zeio	Span	Check	Zero	Span	Zero	Span
						Check	Check	Check	Check
NOx (ppm)	0	150	0	150	0	0.1	150	0.2	151
SO ₂ (ppm)									
CO (ppm)			×						
CO ₂ (%)									
O ₂ (%)	0	20.9	0	20.9	0	0.02	20.92	0.04	20.84
ro, Span and D	rift Check	(S						eli .	
Paramete	r		Analyser	Zero Dri	ift Check	Snan Dr	ift Check	Overall C	
1 aramete	·1	Zero Check		Zero Drint Check		•		Acceptability	
NOx (ppn	1)	0	Pass	0.1	Pass	1	Pass	Pa	ass
SO ₂ (ppm	1)								
CO (ppm)								
CO ₂ (%)									
O ₂ (%)		.0	Pass	0.02	Pass	-0.08	Pass	Pa	ass
orrection of Da	ta for Drif					I			
Parameter			tment	 	eck		iation	Drift Per	
NOx (ppm)	Span		007	<u> </u>	947		0060		000
\	Zero	-0.1	001	-0.1	989	-0.0	989	-0.0	8000
SO ₂ (ppm)	Span				_				
Z (FF***)	Zero								
CO (ppm)	Span								
CO (ppm)	Zero								
(FF)	G						AVI-1-		
	Span								
CO ₂ (%)	Zero								
		1.0	000	1.0	048	0.0	048	0.0	000

Installation: Coventry Site

Environmental Evaluation Limited EE. Reference number: 42732

Appendix B1.3 - Combustion Gases - Plating Area Main Stack

				- 15 - 15 - 15 - 15 - 15 - 15 - 15 - 15		
As Determined Concentrations Dry Basis		CO (nnm)	SO. (nnm)	NO _X (ppm)	CO ₂ (%)	O ₂ (%)
$C_{ppm} = \frac{\sum 1 - n}{n}$	m2	CO (ppin)	OO2 (ppin)	1	CO ₂ (70)	20.8
n				•		20.0
where:						
Σ 1 - n is the sum of the readings				75		2585
n is the total number of readings	=			124		124
Concentrations at 273k and 101.3kPa Dry Basis						7
a mw		CO mgm ⁻³	SO ₂ mgm ⁻³	NO ₂ mgm ⁻³	CO ₂ (%)	O ₂ (%)
$C_{mgm-3} = C_{ppm} \times \frac{mw}{22.4}$	=			1.2		20.8
where:				0.6		
C _{ppm} is the average concentration in ppm mw is the molecular weight of the gas under test	= ====================================			0.6		***
22.4 is the volume of 1 mole at STP (litres)	=			46 22,4		
22.4 is the volume of 1 mole at 511 (nites)				22,4		
Concentrations at 273k and 101.3kPa Wet Basis		ranga kacamatan				
		CO mgm ⁻³	SO ₂ mgm ⁻³	NO ₂ mgm ⁻³	CO ₂ (%)	O ₂ (%)
$\sim (100 - Wv)$	=	-		1.2		20.8
$C_{mgm-3(wet)} = C_{mgm-3} \times \frac{(100 - Wv)}{100}$						
where:						
Concentrations at 273k and 101.3kPa Dry Basis	==			1.2		20.8
Wv is the water vapour content %	=			0.0		0.0
Concentration at 273k and 101.3kPa, Uncorrect	ed for C				60.40	0.40
$C = C = \frac{209 - O_{2ref}}{C}$	=	CO mgm	SO ₂ mgm	NO ₂ mgm ⁻³	CO ₂ (%)	O ₂ (%)
$C_{atX\%} = C_{mgm-3} \times \frac{209 - O_{2ref}}{209 - O_{2meas}}$	_			1.2		
where:						
20.9 is the atmospheric concentration of oxygen				20.9		
O _{2ref} is the reference concentration	=			N/A		
O _{2 meas} is the measured concentration				20.8		
Z ilicas						
Actual Rates of Discharge						
		CO ghr ⁻¹	SO ₂ ghr ⁻¹	NO₂ ghr¹¹	CO ₂ ghr ⁻¹	O ₂ ghr ⁻¹
$E_{g/hr} = C \times Q_{std} \times \frac{60}{1000}$				315.0		
1000						
where:						
C is the dry concentration at STP				1.2		
Q _{std} is the dry flow rate at STP				4227.2		
60/1000 is the conversion factor	=			0.060		

Environmental Evaluation Limited EE. Reference number: 42732

Operator: Meggitt Aircraft Braking Systems

Installation: Coventry Site

Appendix B1.3 - Combustion Gases - Plating Area Main Stack

i meertai	nty Calculation of C	oxides of	Nitroper to BS Be		05		
Symbol	Source of	Value	Probability	Divisor	Cl	=== ti()= ;=	Y ₁
	Uncertainty	+/-	— Distribution —			+/-	or
	Contract of the second	ppm				pjom	Var
U_{LD}	Linearity Deviation	10	Normal(K=2)	2	1	5	
U_R	Repeatability	5	Normal(K=2)	2	1	2.5	
U_{ZD}	Zero Drift	5	Normal(K=2)	2	1	2.5	
U cg	Span Drift	5	Normal(K=2)	2	1	2.5	
U_{CG}	Error in calibration	10	Normal(K=2)	2	1	5	
U _c ()	Combined standard		normal			8.29	
U	Expanded		enter coverage	1.96		16.25	ppm
U	Expanded		enter coverage	1.96		33.37	mgm ⁻³

Uncertai	nty Calculation of C)xygen to		THE PARTY OF THE PROPERTY OF THE PARTY OF TH			
Symbol	Source of	Value	Probability	Divisor	CI -	UI() ===	Y ₁
	Uncertainty	+/-	<u>Distribution</u>			+/-	or
		%				%vol	. Ven
U_{LD}	Linearity Deviation	0.5	Normal(K=2)	2	1	0.25	
U_R	Repeatability	0.125	Normal(K=2)	2	1	0.0625	
U _R	Span Drift	0.25	Normal(K=2)	2	1	0.125	
U_{ZD}	Zero Drift	0.25	Normal(K=2)	2	1	0.125	
Ucg	Calibration gas	0.5	Normal(K=2)	2	1	0.25	
U _c ()	Combined standard		normal			0.40	
U	Expanded		enter coverage	1.96		0.77	%

Installation: Coventry Site

Environmental Evaluation Limited

EE. Reference number: 42732

Appendix B1.4 - Gaseous Fluorides to BS ISO 15713:2006 - Plating Area Main Stack

Company Meggitt Aircrast	Brakin	g Syster Test C	inithicited stayes	T Ledwith & S White	
Site Coventry Site		Date of	Fleet	03 March 2010	
Plant Identification Plating Area Ma	in Stacl	k			
Volume of Gas Metered, Standard Condi	tions \	7 _{mata}			11
	for the second	Blank 1	Test 1		
$V_{mstd} = Y_d \times V_m \times 0.3592 \times \frac{P_m}{(273 + T_m)}$	=	0.0538	0.0538		m ³
Sample reference number - first Impinger	=	42732/HF2/3-3-10	42732/HF1/3-3-10		
Sample reference number - second Impinger	=				
Meter calibration factor Y _d	=	0.9162	0.9162		
Test start time	=		14:33		**-
Test end time	=		15:03		
Test Duration	_	30	30	mi	nutes
Initial meter reading			0	1	itres
Final meter reading		***	60	l	itres
Total meter volume V _m	=	0.0600	0.0600		m ³
Meter Pressure P _m		755	755	mı	m.Hg
Final meter temperature	_	B3-	4.0		°C)
Initial meter temperature	==		4.0	(°C)
Average meter temperature T _m		4,0	4.0	(°C)
Correction to standard conditions		0.3592	0.3592		· · · · · · · · · · · · · · · · · · ·
Hydrogen Fluoride Concentration Cmgm	-3 - Dr	v Riels			
		Blank	Test 1		
$C_{mgm^{-3}} = \frac{M_n}{V_{mstd}}$	=	1.1	1.4	m	igm ⁻³
Where:					
Impinger reference numbers	=	42732/HF2/3-3-10	42732/HF1/3-3-10		
Solution Concentration Impinger 1		0.26	0.32		ngl ⁻¹
Solution Volume Impinger 1		220	230		ml
Mn1 is the Hydrogen Fluoride mass in Impinger	=	0.0572	0.0736		mg
V _{mstd} is the volume of gas metered, standard con	=	0.0538	0.0538		m ³
Gaseous Fluoride Concentration at STP -	-Wet I	Basis - mgm ⁻³			- 1
		Blank 1	Test 1		
$C_{mgm-3(wet)} = C_{mgm-3} \times \frac{(100 - Wv)}{100}$		1.1	1.4	m	gm ⁻³
Gaseous concentration at STP - Dry Basis	=	1.1	1.4	m	igm ⁻³
Wy is the water vapour content	=	0.0	0.0		%

Installation: Coventry Site

Environmental Evaluation Limited EE. Reference number: 42732

Appendix B1.4 - Gaseous Fluorides to BS ISO 15713:2006 - Plating Area Main Stack

Concentration at 273k and 101.3kPa, U	ncorrect	COLEMN DE DE LA COLEMN DE LA CO	in D WARRE		, ja
$20.9 - O_{2ref}$		Blank 1	Test 1		_
$C_{atX\%} = C_{mgm-3} \frac{20.9 - O_{2ref}}{20.9 - O_{2mgas}}$		1.1	1.4		mgm ⁻³
- Zmeas					
Gaseous concentration at STP	_	1.1	1.4		mgm ⁻³
Atmospheric oxygen concentration	=]	20.9	20.9		%
O _{2ref} is the reference oxygen concentration	=	N/A	N/A		%
O _{2meas} is the measured oxygen concentration	=	20.8	20.8		%
Saseous Fluoride Rate of Discharge ghr	-1				
1005000 a constite - tout - 50 a Salama Sc. Stu		Blank 1	Test 1		
G G 60	==	270	347		ghr ⁻¹
$E_{g/hr} = C \times Q_{std} \times \frac{60}{1000}$		2/0	347		gur
	т			1	
Gaseous concentration at STP - Dry Basis	=	1.1	1.4		mgm ⁻³
Ory Total Flow Rate of Stack Gas Q _{std}	=	4227.2	4227.2		m ³ min ⁻¹
0/1000 Conversion factor	=	0.06	0.06		
Comments on Compliance with BS ISO	12712.0	n os			
lydrogen Fluoride absorption efficiency >95%	A CONTRACTOR OF THE PARTY OF TH			Pa	SS
emperature maintained above 150°C				Pa	SS
.eak Rate <2%				Pa	SS
Overall Blank Value <10% of the LV ^a				Fa	il
Ouct gas flow with regard to stack axis <15°				Pa	SS
Ouct gas flow: negative velocity - not permitted				Pa	SS
Ouct gas flow: differential pressure at the pitot t	ube >5pa			Pa	SS
Ouct gas flow: ratio of max to min velocity <3:1	<u> </u>			Pa	ss
Were all of the requirements of BS IS	O 15713	:2003 fulfilled			V
during the test?					X
				Yes	No

Installation: Coventry Site

Environmental Evaluation Limited

EE. Reference number: 42732

Appendix B1.4 - Gaseous Fluorides to BS ISO 15713:2006 - Plating Area Main Stack

Uncertainty Calcula	tions	e e angle an e e e e e e e e e e e e e e e e e e	7 P.			
Measurement Data				The second of the second		
Measured Quantities	Symbol	Value	Stand	dard Uncertainty		Units
Sampled Volume	V _m	0.0600		(1%) uV _m	0.00060	m³
Sampled Gas Temperature	T _m	277.0		uT _m	3	k
Sampled Gas Pressure	ρ_{m}	100.6		uρ _m	0.1	kPa
Sampled Gas Humidity	H _m	0.0		uH _m	0.1	% by volume
Oxygen Content	$O_{2,m}$	20.8	uO _{2,m}		0.01	% by volume
Mass	m	1.37	um _m		0.07	mg
Leak	L	2	%		0.02	
Uncollected Mass	UCM	0				mg
Intermediate Calcula	ition to C	Correct for Stan	dardisa	ition of Conditio	ins	
Factor for Std Conditions	fs	0.98				
Uncertainty Components	symbol	Sensitivity Coefficient			u (in units of fs)	
	ρ_{m}	0.010			0.001	
	H_{m}	0.010			0.001	
	T _m	0.004			0.011	
	ufs				0.011	
Corrected Volume	V	0.06		uV	0.001	m ³
Intermediate Calcula	tion to C	oncession oxy	gen Cor	rection		
Factor for O2 Correction	fc	1.00				
Uncertainty Components	symbol	Sensitivity Coefficient			u (in units of fc)	
	$O_{2,m}$	1.00			0.010	
Factor for O ₂ Correction	ufc	1.00			0.010	%
Calculation of Expan	ded Une	ertainty				
Paramete		Value	Units	Sensitivity Coefficient	Uncertainty in Result	
Volume (Std conditions)	V	0.06	m³	23.28	0.02	mg.m ⁻³
Mass	m	1.37	mg	1.00	0.07	mg.m ⁻³
Factor for O ₂ Correction	fc	1.00		1.37	0.01	mg.m ⁻³
Leak	L	0.02	mg.m ⁻³	1.00	0.02	mg.m ⁻³
Uncollected mass	UCM	0.00	mg	0.00	0.00	mg.m ⁻³
Combined uncertainty					0.07	mg.m ⁻³
Expanded Uncertaint	y K=2				10.88	9/6
Expanded Uncertaint	y K=2				0.15	mg.m ⁻³

Environmental Evaluation Limited

Operator: Meggitt Aircraft Braking Systems

Installation: Coventry Site

EE. Reference number: 42732

Homogeneity Test

		Concentration (ppm or mgm ⁻³)							
Traverse	Sample	Line A		Line B		Line C	Sample	Line D	
Point	ppm/mgm ⁻³	ppm/mgm ⁻³	ppm/mgm ⁻³	ppm/mgm ⁻³	ppm/mgm ⁻³	ppm/mgm ⁻³	ppm/mgm ⁻³	ppm/mgm ⁻³	
1	0.6	0.5	0.6	0.6					
2	0.6	0.5	0.6	0.6					
3	0.6	0.5	0.6	0.6					
4	0.5	0.6	0.6	0.6					
5	0.5	0.6	0.5	0.6					
6	0.6	0.5	0.5	0.7					
7	0.5	0.5	0.6	0.7					
8	0.6	0.5	0.6	0.6					
9	0.6	0.6	0.5	0.6	•				
10	0.6	0.6	0.6	0.6					

	C _{grid}	C _{ref}	C _{grid} /C _{ref}			
Mean Value	0.6	0.6	99.5			
	S _{grid}	S _{ref}				
Standard Deviation	0.0	0.1				
Number of Measurements		20				
Degrees of freedom		19				
Homogeneity Test:						
Test Value (S _{grid} /S _{ref}) ²		0.58				
F95%	A4 19.44					
Waste Gas	homogenous					
Standard Dev. of time S _{ref}						
Standard Dev. of position Spos						
Permissable uncertainty U _{perm}		1				
t _{N-1;0.95}		May and Aud				
U _{pos}						
U _{pos} ≤ 0.5 U _{perm}						
Required Measurement Type		any point				
Representative measurement pt.		· evalue				
C _{grid} /C _{ref} at representative point						

Installation: Coventry Site

Environmental Evaluation Limited EE. Reference number: 42732

Test Certificates

Installation: Coventry Site

Scientific Analysis Laboratories **Certificate of Analysis**

Hadfield House Hadfield Street Combrook Manchester M16 9FE Tel: 0161 874 2400 Fax: 0181 874 2404

limited company registered in England and Wates (No 2514788) whose address is at Hadfield House, Hadfield Street, Manchester M15 9FE

> Report Number: 193150-1 Date of Report: 15-Mar-2010

> > Customer: Environmental Evaluation

23 Pemberton Street Birmingham

B18 6NY

Customer Contact: Mr Tony Ledwith

Customer Job Reference: 42732 Customer Purchase Order: 9533SW Date Job Received at SAL: 09-Mar-2010 Date Analysis Started: 10-Mar-2010 Date Analysis Completed: 15-Mar-2010

The results reported relate to samples received in the laboratory Opinions and interpretations expressed herein are outside the scope of UKAS accreditation This report should not be reproduced except in full without the written approval of the laboratory Tests covered by this certificate were conducted in accordance with SAL SOPs

Report checked and authorised by : Ms Jeanette Abbott Project Manager

Issued by: Signature yalid

Page 1 of 3

This document has been printed from a digitally signed master copy

Operator: Meggitt Aircraft Braking Systems Installation: Coventry Site

Environmental Evaluation Limited EE. Reference number: 42732

Index to symbols used in 193150-1

Value	Desamption
AR	As Received
13	Results have been blank corrected.
U	Analysis is UKAS scoredited
N	Anabaia is not accordited

Produced by Scientific Analysis Leboratories, Hadfield House, Hadfield Street, Combrook, Manchester, M16 9FE

This document has been printed from a digitally signed master copy

Page 2 of 3

Environmental Evaluation Limited

Operator: Meggitt Aircraft Braking Systems

Installation: Coventry Site

EE. Reference number: 42732

BAL Reference:	193150					
Gustomer Reference:	42732					
impinger (sodium hydroxide)	Analysed	es Imping	er (socium	hydroxide)		
Mecellaneous						
			8.8	L Reference	193150 001	193150 602
		Custo	mer Sampl	e Reference	42732/03/03/10/F1	42732/03/03/10/F2
		Custo		e Reference Fest Sample	42732/03/03/10/F1 AR	42732/03/03/10/F2 AR
Determinand	Method	LOD				
Daterminand Hydrogen Fluoride	Method IC			Test Sample		

Produced by Scientific Analysis Leboratories, Hadfield House, Hadfield Street, Combrook, Manchester, M16 9FE This document has been printed from a digitally signed master copy

Page 3 of 3