Report for the Periodic Monitoring of Emissions to Air

Part 1. Executive Summary

Operator: Meggitt Aircraft Braking Systems

UKAS TESTING

Installation: Coventry Plant

Monitoring Date(s): 02 August 2012

E.E. Report Ref.: 57030

Client Name: Meggitt Aircraft Braking Systems

Client Address: Holbrook Lane

Coventry CV6 4AA

Monitoring Organisation: Environmental Evaluation Ltd. (Head Office)

Lawton Square

Delph Oldham OL3 5DT

Date of Report: 20 August 2012

Report Written by: N Teixeira

Function: MCERTS Level 2 Team Leader

Report Approved By: T Ledwith

MCERTS Registration No.: MM 03 425

MCERTS Level: MCERTS Level 2

Technical Endorsements: TE1, TE2, TE3, TE4

Signed:

Environmental Evaluation Limited EE Reference Number: 57030 Visit Number: 1, 2012

Operator: Meggitt Aircraft Braking Systems Installation: Coventry Plant

Contents

Part 1. Executive Summary

1.1	Monitoring Objectives	3
1.2	Monitoring Results	4
1.3	Operating Information	4
1.4	Monitoring Deviations	4
	Part 2. Supporting Information	
	Appendix A: General Information	
A1	Environmental Evaluation Limited Staff Details	6
A2	Environmental Evaluation Limited Method Details	6
A3	Sub-Contract	6
A4	Equipment Used in the Monitoring Campaign	6
	Appendix B: Emission Information	
B 1	Plating Area Main Stack Information	
B1.1	Diagrams Showing the Dimensions and Monitoring Facilities	7
B1.2	Preliminary Velocity and Temperature Measurement	7
B1.3	Gaseous Fluorides to BS ISO 15713:2006	8
B1.4	Oxides Of Nitrogen - Including Acid Mist (as NO2) to USEPA Method 7d	11
	Test Certificates	14
	MCERTS Certificates	17

Environmental Evaluation Limited EE Reference Number: 57030 Visit Number: 1, 2012

1 Part 1: Executive Summary

1.1 Monitoring Objectives

Meggitt Aircraft Braking Systems has been permitted under the Pollution Prevention and Control (England and Wales) Regulations 2000 to operate various processes at the Coventry Plant site, and a condition of that permit is that emission monitoring is undertaken on a regular basis to prove compliance or otherwise against prescribed emission limit values.

This report details the testing undertaken on the 02 August 2012

The substance monitoring requirements for each emission point are detailed below.

Substances	Emission Point Identification
Monitored	Plating Area Main Stack
Flow	✓
Temperature	✓
Oxides of Nitrogen	✓
Fluorides	✓
Water vapour	✓

Permit Number: PPC/156

Operator: Meggitt Aircraft Braking Systems

Installation: Coventry Plant

Environmental Evaluation Limited EE Reference Number: 57030 Visit Number: 1, 2012

1.2 Monitoring Results

Emission	Substance	Emission	Measured	Uncertainty	Units	Reference	Date of	Start and	Monitoring	Accreditation	Operating
Point	to be	Limit	Concentration			Conditions	Monitoring	End Times	Method	for use of	Status
	Monitored	Value							Reference	Method	
Plating Area Main Stack	Fluorides	5	0.4	± 0.04	mgm ⁻³	273K and 101.3 kPa, No Oxygen Correction, Wet Basis	02/08/2012	10:45 - 11:50	BS ISO 15713:2006	UKAS MCERTS	Normal
Plating Area Main Stack	Oxides Of Nitrogen - Including Acid Mist (as NO ₂)	200	0.5	± 0.1	mgm ⁻³	273K and 101.3 kPa, No Oxygen Correction, Wet Basis	02/08/2012	12:10 - 13:15	USEPA Method 7d	None*	Normal

^{*} Accreditation applied for.

1.3 Operating Information

Emission Point Reference	Date	Process Type	Process Duration	Feedstock	Abatement
Plating Area Main Stack	02 August 2012	Metal Treatment In Acid Dip Tanks	Batch	Aircraft Components	Wet / Caustic Scrubber

1.4 Monitoring Deviations

Emission Point Reference	Substance Deviations	Monitoring Deviations	Other Relevant Issues
Plating Area Main Stack	None	None	Please note that the analysis was conducted using ion
			chromatography and therefore the results have been
			returned as NO _{3.} These results have been converted
			to Oxides of Nitrogen (as NO ₂) by multiplying by
			46/62.
			The fluoride absorption efficiency was less than 95%,
			however all analyses were returned at less than 5
			times the limit of detection.

Report for the Periodic Monitoring of Emissions to Air

Part 2. Supporting Information

Operator: Meggitt Aircraft Braking Systems

UKAS TESTING 1506

Installation: Coventry Plant

Monitoring Date: 02 August 2012

E.E. Report Ref.: 57030

Client Name: Meggitt Aircraft Braking Systems

Client Address: Holbrook Lane

Coventry CV6 4AA

Monitoring Organisation: Environmental Evaluation Ltd. (Head Office)

Lawton Square

Delph Oldham OL3 5DT

Date of Report: 20 August 2012

Report Written by: N Teixeira

Function: MCERTS Level 2 Team Leader

Report Approved By: T Ledwith

MCERTS Registration No.: MM 03 425

MCERTS Level: MCERTS Level 2

Technical Endorsements: TE1, TE2, TE3, TE4

Signed:

Permit Number: PPC/156 Operator: Meggitt Aircraft Braking Systems

Environmental Evaluation Limited EE Reference Number: 57030 Installation: Coventry Plant

APPENDICES

Appendix A: General Information

A1. Environmental Evaluation Limited Staff Details

Team Leader: N Teixeira MCERTS No. MM 05 583 Certification Level: MCERTS Level 2 **Technical Endorsements:** TE1, TE2, TE3, TE4

Site Technician: P Soley MCERTS No. MM 12 1187 Certification Level: Trainee **Technical Endorsements:** None

A2. Environmental Evaluation Limited Method Details

The indicated substances were measured by the standards and in house methods specified in the table below:

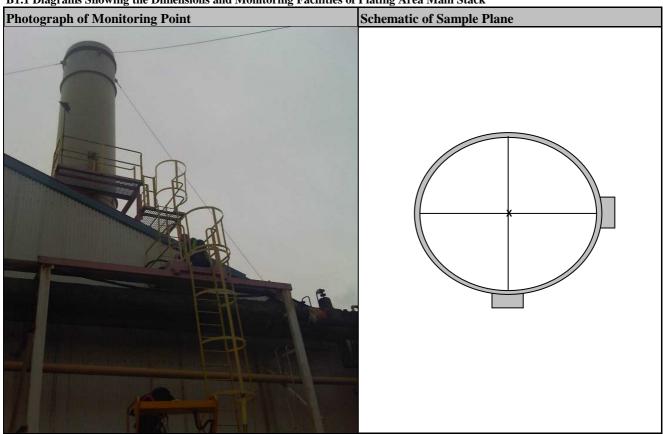
Visit Number: 1, 2012

Substance	Standard	EE. Reference
Flow	BS EN 13284:2002	EE/P/001 & 2
Temperature	BS EN 13284:2002	EE/P/001 & 2
Fluorides	BS ISO 15713:2006	EE/P/017
Oxides Of Nitrogen	USEPA 7d	EE/P/0028
Water vapour	BS EN 14790:2005	EE/P/013

A3. Sub-Contract

Analysis was subcontracted to a UKAS accredited laboratory.

A4. Equipment Used in the Monitoring Campaign


Equipment checklists appropriate to the methods were used.

Equipment Type	EE Equipment Reference Code
Low Flow Kit	LCL44
Pitot	LCL 21 2m L Type
Manometer	LCL 26
Thermosensor	LCL 15
Thermocouple	LCL 17
Tape Measure	LCL 18
Barometer	LCL 23
Probe	LCL 40
Vernier Callipers	LCL 14
Stop Watch	LCL 25
Scales	LCL 22
Check Weight	LCL27

Appendix B: Emission Information

B1 - Plating Area Main Stack Information

B1.1 Diagrams Showing the Dimensions and Monitoring Facilities of Plating Area Main Stack

B1.2 Preliminary Velocity and Temperature Measurement of Plating Area Main Stack

11.2 Freminiary Velocity and Temperature Measurement of Fracting Area Main Stack												
Traverse	Sa	mple Line	e A	Sa	Sample Line B Sample			mple Line	e C Sample line D			
Point	Stack	ΔΡ	Swirl	Stack	ΔΡ	Swirl	Stack	ΔΡ	Swirl	Stack	ΔΡ	Swirl
	Temp.	(Pa)	Angle	Temp.	(Pa)	Angle	Temp.	(Pa)	Angle	Temp.	(Pa)	Angle
	(°C)		(0)	(°C)		(0)	(°C)		(0)	(°C)		(o)
1	21	85	0	21	78	0						
2	21	110	0	21	86	0						
3	21	66	0	21	96	0						
4	21	103	0	21	93	0						
5	21	44	0	21	94	0						
6	21	40	0	21	84	0						
7	21	47	0	21	54	0						
8	21	57	0	21	28	0						
9	21	26	0	21	43	0						
10	21	54	0	21	28	0			·	·		·
	$\Sigma \Delta P_A$	632		$\Sigma \Delta P_{\mathrm{B}}$	684		$\Sigma \Delta P_{C}$			$\Sigma \Delta P_{\mathrm{D}}$		

Barometric Pressure (mmHg)	761	Port Depth (mm)	120
Static Pressure (mmH ₂ O)	-5.31	Port Seal Adaptor Depth (mm)	120
Diameter (m)	1.60	Assumed CO ₂ (%)	0.0
		Assumed O ₂ (%)	20.9
Stack Area (m ²)	2.011	Assumed CO (%)	0.0
Port Size (mm)	100	Assumed H ₂ O (%)	0.0

Environmental Evaluation Limited EE Reference Number: 57030 Visit Number: 1, 2012

Appendix B1.3 - Gaseous Fluorides to BS ISO 15713:2006 - Plating Area Main Stack

Company	leggitt Aircraft Braki	ng Syst	ems Test Co	onducted by	N Teixeira & P	Soley
	Coventry Plant		Date of		02 August 2012	
	lating Area Mair	Stacl	k			
	&					
Volume of Water Vapour at	Standard Con	ditior	ns V _{wstd}			
			Blank	Test 1	Test 2	Units
$V_{wstd} = (0.00124) \times V_{lc}$		=		0.0009		m^3
Where:						
Constant		=		0.00124		
Initial Dryer mass		=		645		g
Final Dryer mass		=		645.7		g
V _{lc} is the mass of water collected		=		0.7		g
Volume of Gas Metered, Star	ndard Conditio	ons V	mstd			
	P		Blank 1	Test 1		
$V_{mstd} = Y_d \times V_m \times 0.3592 \times -0.3592 \times -0$	$\frac{1_m}{(272+T)}$	=	0.1501	0.1501		\mathbf{m}^3
,	$(2/3+I_m)$					
Sample reference number - first In	mninger	=	57030-02/08/12-S3	57030-02/08/12-S1		
Sample reference number - second		=		57030-02/08/12-S2		
Meter calibration factor Y _d	u impiliger	<u> </u>	1.2105	1.2105		
Test start time				10:45		
Test end time				11:50		
Test Duration			65	65		minutes
				0.5		
Initial meter reading		=		133.4		litres
Final meter reading		=				litres
Total meter volume V _m		=	0.1334	0.1334		m ³
Meter Pressure P _m		=	761	761		mm.Hg
Final meter temperature		=		21.0		(°C)
Initial meter temperature		=		21.0		(°C)
Average meter temperature T _m		=	21.0	21.0		(°C)
Correction to standard conditions		=	0.3592	0.3592		
Hydrogen Fluoride Concentr	ration Cmgm ⁻³	- Dry	y Basis			
			Blank	Test 1		
$C_{mgm^{-3}} = \frac{M_n}{V_{mstd}}$		=	0.1	0.4		mgm ⁻³
Where:			Π	I	1	
Impinger reference numbers		=	57030-02/08/12-S3	57030-02/08/12-S1		·
Solution Concentration Impinger	1		0.06	0.23		mgl ⁻¹
Solution Volume Impinger 1			140	210		ml
Mn1 is the Hydrogen Fluoride ma	ss in Impinger	=	0.0084	0.0483		mg
Second impinger reference number		=		57030-02/08/12-S2		
Solution Concentration Impinger	1			0.08		mgl ⁻¹
Solution Volume Impinger 1				160		ml
Mn2 is the Hydrogen Fluoride ma	ss in Impinger	=		0.0128		mg
Absorption efficiency		=		79.1		%
V _{mstd} is the volume of gas metered	d, standard con	=	0.1501	0.1501		m^3

Permit Number: PPC/156

Environmental Evaluation Limited Operator: Meggitt Aircraft Braking Systems Installation: Coventry Plant

Appendix B1.3 - Gaseous Fluorides to BS ISO 15713:2006 - Plating Area Main Stack

Gaseous Fluoride Concentration at STF	- Wet B	asis - mgm ⁻³		
$C_{mgm-3(wet)} = C_{mgm-3} \times \frac{(100 - Wv)}{100}$	=	Blank 1 0.1	Test 1 0.4	mgm ⁻³
Gaseous concentration at STP - Dry Basis	=	0.1	0.4	mgm ⁻³
Wv is the water vapour content	=	0.6	0.6	%

EE Reference Number: 57030

Visit Number: 1, 2012

Name and April 1987 1987 1987 1987 1987 1987 1987 1987	4 .	160	117 - 4 D		
Concentration at 273k and 101.3kPa, Un	correcte				
$C = C = 20.9 - O_{2ref}$		Blank 1 0.1	Test 1 0.4		
$C_{atX\%} = C_{mgm-3} \frac{20.9 - O_{2ref}}{20.9 - O_{2meas}}$	=	0.1	0.4	mgm ⁻³	
2,,,,,,					
Gaseous concentration at STP	=	0.1	0.4	mgm ⁻³	
Atmospheric oxygen concentration	=	20.9	20.9	%	
O_{2ref} is the reference oxygen concentration	=	N/A	N/A	%	
O _{2meas} is the measured oxygen concentration	=	N/A	N/A	%	
	-				
Gaseous Fluoride Rate of Discharge ghr	1				
60		Blank 1	Test 1		
$E_{g/hr} = C \times Q_{std} \times \frac{60}{1000}$	=	4	29	ghr ⁻¹	
1000					
	T				
Gaseous concentration at STP - Dry Basis	=	0.1	0.4	mgm ⁻³	
Dry Total Flow Rate of Stack Gas Q _{std}	=	1183.2	1183.2	m ³ min	
60/1000 Conversion factor	=	0.06	0.06		
Comments on Compliance with BS ISO	15713.20) <u>06</u>			
Hydrogen Fluoride absorption efficiency >95%		700		N/A	
Temperature maintained above 150°C				Pass	
Leak Rate <2%				Pass	
Overall Blank Value <10% of the LV ^a				Pass	
Duct gas flow with regard to stack axis <15°				Pass	
Duct gas flow: negative velocity - not permitted	l			Pass	
Duct gas flow: differential pressure at the pitot		a		Pass	
Duct gas flow: ratio of max to min velocity <3:			+	Pass	

 $Appendix\ B1.3-Gaseous\ Fluorides\ to\ BS\ ISO\ 15713:2006-Plating\ Area\ Main\ Stack$

Uncertainty Calculat	tions					
Measurement Data						
Measured Quantities	Symbol	Value	Standa	ard Uncertainty		Units
Sampled Volume	$V_{\rm m}$	0.1334	(1%) uV _m	0.00133	m ³
Sampled Gas Temperature	$T_{\rm m}$	294.0		uT _m	3	k
Sampled Gas Pressure	ρ_{m}	101.4	$u\rho_m$		0.1	kPa
Sampled Gas Humidity	H_{m}	0.6		uH _m	0.1	% by volume
Oxygen Content	$O_{2,m}$	N/A		$uO_{2,m}$	0.01	% by volume
Mass	m	0.40		um _m	0.02	mg
Leak	L	2		%	0.02	
Uncollected Mass	UCM	0				mg
Intermediate Calcula	ation to C	orrect for Stan	dardisat	tion of Conditio	ons	
Factor for Std Conditions	fs	0.92				
Uncertainty Components	symbol	Sensitivity Coefficient			u (in units of fs)	
	ρ_{m}	0.009			0.001	
	H_{m}	0.009			0.001	
	$T_{\rm m}$	0.003			0.009	
	ufs				0.010	
Corrected Volume	V	0.12		uV	0.002	\mathbf{m}^3
Intermediate Calcula	ation to C	orrect for Oxyg	gen Cori	rection		
Factor for O ₂ Correction	fc	1.00				
Uncertainty Components	symbol	Sensitivity Coefficient			u (in units of fc)	
	$O_{2,m}$	1.00			0.010	
Factor for O ₂ Correction	ufc	1.00			0.010	%
Calculation of Expan	nded Unce	ertainty				
Parameter		Value	Units	Sensitivity Coefficient	Uncertainty in Result	
Volume (Std conditions)	V	0.12	m^3	3.28	0.01	mg.m ⁻³
Mass	m	0.40	mg	1.00	0.02	mg.m ⁻³
Factor for O ₂ Correction	fc	1.00		0.40	0.00	mg.m ⁻³
Leak	L	0.00	mg.m ⁻³	1.00	0.00	mg.m ⁻³
Uncollected mass	UCM	0.00	mg	0.00	0.00	mg.m ⁻³
Combined uncertainty					0.02	mg.m ⁻³
Expanded Uncertain	ty K=2				10.87	%
Expanded Uncertain	ty K=2				0.04	mg.m ⁻³

Permit Number: PPC/156 Operator: Meggitt Aircraft Braking Systems Installation: Coventry Plant Environmental Evaluation Limited EE Reference Number: 57030 Visit Number: 1, 2012

Appendix B1.4 - Oxides Of Nitrogen - Including Acid Mist (as NO2) to USEPA Method 7d - Plating Area Main Stack

Company	Meggitt Aircraft Braking Systems	Test Conducted by	N Teixeira & P Soley
Site	Coventry Plant	Date of Test	02 August 2012
Plant Identification	Plating Area Main Stack		

Volume of Water Vapour at Standard C	onditio	ns V _{wstd}			
$V_{wstd} = (0.00124) \times V_{lc}$	=	Blank	Test 1 0.0007	Test 2	Units m ³
Where:					
Constant	=		0.00124		
Initial Dryer mass	=		675		g
Final Dryer mass	=		675.6		g
V _{lc} is the mass of water collected	=		0.6		g
Volume of gas metered, standard condit	ions V _m	std			
P		Blank 1	Test 1		
$V_{mstd} = Y_d \times V_m \times 0.3592 \times \frac{P_m}{(273 + T_m)}$	=	0.1363	0.1363		m^3
Sample reference number	=	57030-02/08/12-S5	57030-02/08/12-S4		
Meter calibration factor Y _d	=	1.2105	1.2105		
Test start time	=		12:10		
Test end time	=		13:15		
Test Duration (mins)	=	65	65		minutes
Initial meter reading (litres)	=		0		litres
Final meter reading (litres)	=		121.1		litres
Total meter volume V _m (m ³)	=	0.1211	0.1211		m^3
Meter Pressure P _m (mmHg)	=	761	761		mm.Hg
Final meter temperature (°C)	=		21.0		(°C)
Initial meter temperature (°C)	=		21.0		(°C)
Average meter temperature T _m (°C)	=	21.0	21.0		(°C)
Correction to standard conditions	=	0.3592	0.3592		
Concentration at STP - Dry Basis - mgm	i ⁻³				
		Blank 1	Test 1		
$C_{mgm^{-3}} = \frac{M_n}{V_{mstd}}$	=	0.46	0.54		mgm ⁻³
Sample reference number		57030-02/08/12-S5	57030-02/08/12-S4		
Mass of analyte	=	0.063	0.074		mg
Volume of gas metered, standard conditions V _n	ı: =	0.1363	0.1363		m^3

Concentration at STP - Wet Basis - mg	m ⁻³			
$(100 - W_V)$		Blank 1	Test 1	
$C_{mgm-3(wet)} = C_{mgm-3} \times \frac{(100 - Wv)}{100}$	=	0.46	0.54	mgm ⁻³
Gaseous concentration at STP - Dry Basis	=	0.46	0.54	mgm ⁻³
Wv is the water vapour content %	=	0.5	0.5	%

Appendix B1.4 - Oxides Of Nitrogen - Including Acid Mist (as NO2) to USEPA Method 7d - Plating Area Main Stack

$C_{atX\%} = C_{mgm-3} \frac{20.9 - O_{2ref}}{20.9 - O_{2meas}}$	=	Blank 1 0.46	Test 1 0.54	mgm ⁻³
Gaseous concentration at STP	=	0.46	0.54	mgm ⁻³
Atmospheric oxygen concentration	=	20.9	20.9	%
O_{2ref} is the reference oxygen concentration	=	N/A	N/A	%
O_{2meas} is the measured oxygen concentration	=	N/A	N/A	%
Oxides Of Nitrogen - Including Acid Mis	st (as NO	02) Rate of D	ischarge mg/hr	
Onder of the ogen mentaling from the	(33 1)	32) Rate of D	is cital go mg/m	
	30 (3 3 1)	Blank 1	0	
	=	•	0	ghr ⁻¹
$E_{g/hr} = C \times Q_{std} \times \frac{60}{1000}$ Compound		Blank 1	Test 1	ghr ⁻¹
$E_{g/hr} = C \times Q_{std} \times \frac{60}{1000}$ Compound		Blank 1	Test 1	
$E_{g/hr} = C \times Q_{std} \times \frac{60}{1000}$	=	Blank 1 32.85	Test 1 38.64	ghr ⁻¹ mgm ⁻³ m³min

Appendix B1.4 - Oxides Of Nitrogen - Including Acid Mist (as NO2) to USEPA Method 7d - Plating Area Main Stack

Visit Number: 1, 2012

Uncertainty Calculat	tions					
Measurement Data						
Measured Quantities	Symbol	Value	Standa	ard Uncertainty		Units
Sampled Volume	V _m	0.1211	(1%) uV _m	0.00121	m^3
Sampled Gas Temperature	T _m	294.0		uT _m	3	k
Sampled Gas Pressure	ρ_{m}	101.4		$u\rho_m$	0.1	kPa
Sampled Gas Humidity	$H_{\rm m}$	0.5		uH _m	0.1	% by volume
Oxygen Content	$O_{2,m}$	N/A		$uO_{2,m}$	0.01	% by volume
Mass	m	0.07		um _m	0.00	mg
Leak	L	2		%	0.02	
Uncollected Mass	UCM	0				mg
Intermediate Calcula	tion to C		dardisa	tion of Condition	ons	
Factor for Std Conditions	fs	0.92				
Uncertainty Components	symbol	Sensitivity Coefficient			u (in units of fs)	
	ρ_{m}	0.009			0.001	
	H_{m}	0.009			0.001	
	T_{m}	0.003			0.009	
	ufs				0.010	
Corrected Volume	V	0.11		uV	0.002	m ³
Intermediate Calcula	tion to C	orrect for Oxy	gen Cor	rection		
Factor for O ₂ Correction	fc	1.00				
Uncertainty Components	symbol	Sensitivity Coefficient			u (in units of fc)	
	$O_{2,m}$	1.00			0.010	
Factor for O ₂ Correction	ufc	1.00			0.010	%
Calculation of Expan	ided Unc	ertainty	ı			
Parameter		Value	Units	Sensitivity Coefficient	Uncertainty in Result	
Volume (Std conditions)	V	0.11	m^3	4.83	0.01	mg.m ⁻³
Mass	m	0.07	mg	7.30	0.03	mg.m ⁻³
Factor for O ₂ Correction	fc	1.00		0.54	0.01	mg.m ⁻³
Leak	L	0.01	mg.m ⁻³	1.00	0.01	mg.m ⁻³
Uncollected mass	UCM	0.00	mg	0.00	0.00	mg.m ⁻³
Combined uncertainty					0.03	mg.m ⁻³
Expanded Uncertain	ty K=2				10.87	%
Expanded Uncertain	ty K=2				0.06	mg.m ⁻³

Test Certificates

Permit Number: PPC/156

Operator: Meggitt Aircraft Braking Systems

Installation: Coventry Plant

Environmental Evaluation Limited EE Reference Number: 57030 Visit Number: 1, 2012

Scientific Analysis Laboratories Ltd Certificate of Analysis

Hadfield House Hadfield Street Cornbrook Manchester M16 9FE Tel: 0161 874 2400 Fax: 0161 874 2404

Scientific Analysis Laboratories is a limited company registered in England and Wales (No 2514788) whose address is at Hadfield House, Hadfield Street, Manchester M16 9FE

Report Number: 290185-1

Date of Report: 10-Aug-2012

Customer: Environmental Evaluation

Unit 10

Greenwood Court Ramridge Road Luton LU2 0TN

Customer Contact: Mr Neil Teixeira

Customer Job Reference: 57030
Customer Purchase Order: 11659NT
Date Job Received at SAL: 06-Aug-2012
Date Analysis Started: 07-Aug-2012
Date Analysis Completed: 10-Aug-2012

The results reported relate to samples received in the laboratory
Opinions and interpretations expressed herein are outside the scope of UKAS accreditation
This report should not be reproduced except in full without the written approval of the laboratory
Tests covered by this certificate were conducted in accordance with SAL SOPs

Report checked and authorised by : Kayleigh McCann Project Manager Issued by : Kayleigh McCann Project Manager

Page 1 of 2

This document has been printed from a digitally signed master copy

| SAL Reference: 290185 | Customer Reference: 57030 | Impinger (sodium hydroxide) | Analysed as Impinger (sodium hydroxide) | Miscellaneous | SAL Reference | 290185 001 | 290185 002 | 290185 003 | | S7030/02/08/12 | S7030/02/08

SAL Reference:	290185					
Customer Reference:	57030					
Impinger(permanganate)	Analysed a	as Imping	er(permang	ganate)		
Miscelianeous						
			SA	L Reference	290185 004	290185 005
		Custo		L Reference e Reference		
		Custo	mer Sampl			
Determinand	Method	Custo	mer Sampl	e Reference	57030/02/08/12 S4	57030/02/08/12 S5
Determinand Nitrate	Method IC	,	mer Sampl	e Reference Test Sample	57030/02/08/12 S4	57030/02/08/12 \$5

Index to symbols used in 290185-1

Value	Description
AR	As Received
13	Results have been blank corrected.
U	Analysis is UKAS accredited
N	Analysis is not UKAS accredited

Produced by Scientific Analysis Laboratories Ltd, Hadfield House, Hadfield Street, Combrook, Manchester, M16 9FE
This document has been printed from a digitally signed master copy

Page 2 of 2

Permit Number: PPC/156 Operator: Meggitt Aircraft Braking Systems

Installation: Coventry Plant

Environmental Evaluation Limited EE Reference Number: 57030 Visit Number: 1, 2012

MCERTS Certificates

Permit Number: PPC/156 Operator: Meggitt Aircraft Braking Systems

Operator: Meggitt Aircraft Braking Systems
Installation: Coventry Plant

Environmental Evaluation Limited EE Reference Number: 57030 Visit Number: 1, 2012

Certificate of Personnel Competence

This is to certify that

Neil Teixeira

has been assessed by Sira Certification Service and has demonstrated competence to the required standard of

Level 2 (team leader)

as defined in

MCERTS Personnel Competency Standard for Manual Stack-Emission Monitoring : April 2011, Version 7.2

for the following Technical Endorsements:

TE1 - Particulate monitoring by isokinetic sampling techniques expires Jun 2016
TE2 - Multi-phase sampling techniques expires Jun 2016
TE3 - Gases/vapours by manual techniques expires Jun 2017
TE4 - Gases/vapours by instrumental techniques expires Mar 2017

Level 2 personnel may be required to retake the oral examination if the MCERTS Examination Board receives and upholds a complaint about them of a serious nature. The use of this certificate and the Sira Certification Mark are subject to the Regulations Applicable to Holders of Sira Certificates. The certificate holder agrees to comply with the MCERTS Code of Conduct. This certificate remains valid until the expiry date shown below.

Certificate issued: Dec 2011 Certificate No: Sira MP05
Level 2 renewal date: Jun 2016 Registration No: MM05
H8S renewal date: Sep 2015

Certificate expiry date : Sep 2015

egistration No: MM05 583

R. Cooper Veng MinstMC

R Cooper LEng MInstMC Technical Director

333 /5

This certificate removes the property of Sira and shall be returned when requester). It may only be reproduced in its entirety and without change,

MCERTS is operated on behalf of the Environment Agency by

Sira Certification Service

12 Acom Industrial Park, Crayford Road, Crayford, Darfford, Kent DA1 4AL, Tel: +44 (0)1322 520500 Fax: +44 (0)1322 520501

End of Report