

MEASUREMENT OF PARTICULATE EMISSIONS FROM ARRESTMENT PLANT AT SARGINSONS PRECISION COMPONENTS, COVENTRY

Part 1 Executive Summary

Sampling on 15 June 2010

Sampling at Sarginsons Precision Components Torrington Avenue Coventry CV4 9AG

Report prepared for

Report prepared by

Sarginsons Precision Components Torrington Avenue Coventry CV4 9AG Environmental Scientifics Group Limited Unit D, Acacia Building Vantage Point Business Village Mitcheldean Gloucestershire GL17 0DD

Author M Davies (Operations Manager)

MM 02087 Level 2, TE1, TE2, TE3, TE4

Approved: N Ford (Practice Manager)

MM 02084 Level 2, TE1, TE2, TE3, TE4

1.

2.

3.

4.

5.

6.

CONTENTS

Page No.

Part 1 – Executive Summary

COVER		1
CONTENTS		2
SUMMARY		4
INTRODUCTIO	DN	7
TEST PROGRA	AMME AND OBJECTIVES	7
METHODS OF	MEASUREMENT	8
3.1 3.2 3.3	Measurements of Releases to Atmosphere Sampling Locations Accreditation of Measurements	8 8 9
RELEASES TO	ATMOSPHERE	9
RESULTS AND	DISCUSSION	10
5.1 5.2	Emissions from the Wet Arrestor exhaust Emissions from the Dry Arrestor exhaust	10 10
REFERENCES		11
Tables 1a, 1b, 2a	a & 2b	13
Figures 1 & 2		15

CONTENTS (continued)

Part 2 Supporting Information

Table 3	Staff & Competency	17
Table 4a	Sampling methodology	18
Table 4b	Analysis methodology	18
Table 4c	UKAS and MCERTs accreditation	18

MONITORING REPORT FORMS

Wet Arrestor Exhaust

A1FL	Flow	15 June 2010	23
A1TPM	Total particulate matter		27
A1H2O	Water vapour		21

Dry Arrestor Exhaust

A2FL	Flow		29
A2TPM	Total particulate matter	15 June 2010	33
A2H2O	Water vapour		37

Page No.

19

SUMMARY

Sarginsons Precision Components placed a contract with Environmental Scientifics Group Limited (ESG) to undertake an assessment of emissions to atmosphere of particulate species from arrestment plant located at their Coventry site. Measurements were made in the exhausts serving the wet and dry arrestors on the 15 June 2010.

The following results were obtained for the required determinands:

Monitoring Results

Summary of Measurements of Particulate Releases

Permitted Releases – A1 Wet Arrestor

15 June 2010

Determinand	Reported as	Date	Time Start	Time End	Concentration	Emission Limit Value
Total particulate matter	TPM	15.06.10	1435	1540	$6 \pm 5 $ mg/m ³	50

Permitted Releases – Dry Arrestor

15 June 2010

Determinand	Reported as	Date	Time Start	Time End	Concentration	Emission Limit Value
Total particulate matter	TPM	15.06.10	1604	1704	$4 \pm 3 $ mg/m ³	-

All determinands reported above are expressed at plant reference conditions of 273 K temperature and 101.3 kPa pressure (Standard Temperature & Pressure (STP)) in a wet gas with no correction for oxygen content.

All measurements reported above are UKAS accredited to the MCERTs performance standard.

Monitoring Methods & Accreditation

Sampling Methodology and Accreditation

Sampling Methods

Determinand	Sampling method	Procedure
		No.
TPM	BS EN 13284-1 using EPA 5-type equipment	AE 104
Velocity	BS EN 13284-1 using a Pitot static tube	AE 122
O_2	BS EN 14789 (zirconium cell analyser)	IEM 002
H ₂ O	BS EN 14790	AE 105

Summary of Analytical Methods

Determinand	Analytical method	Analysis house
TPM	Gravimetric determination	ESG
H ₂ O	Gravimetric determination	ESG

A description of the sampling and analytical methods employed in the execution of the measurements reported herein is presented above. All sampling and associated analytical activities were undertaken by ESG.

Summary of UKAS and MCERTs Compliance

Determinand	Sam	pling	Ana	alysis
	UKAS Accreditation	MCERTs Compliant	UKAS Accreditation	MCERTs Compliant
ТРМ	1015	\checkmark	1015	\checkmark
Velocity	1015	\checkmark	not ap	plicable
O ₂	1015	✓	1015	\checkmark
H ₂ O	1015	\checkmark	1015	\checkmark

Plant Operating Information

Exhaust Gas Measurements and Plant Operating Conditions

Date Exhaust gas c	haracterisation	15 June 2010 information
Test		A1FL
Time start		1400
Time end		1409
Velocity	m/s	9.8
Temperature	°C	26
Flow	m^3/s , ref cond.	1.94
Oxygen	%, v/v, dry	20.8
Water vapour	% v/v	1.0

A1 - Wet Arrestor Exhaust

Dry Arrestor Exhaust

Date 15 June 2010 Exhaust gas characterisation information					
Test		A2FL			
Time start		1500			
Time end		1515			
Velocity	m/s	18.4			
Temperature	°C	29			
Flow	m^3/s , ref cond.	11.10			
Oxygen	%, v/v, dry	20.8			
Water vapour	% v/v	0.9			

The plant serving the dry and wet arrestors were operating normally during the periods of sampling.

1. **INTRODUCTION**

Sarginsons Precision Components placed a contract with Environmental Scientifics Group Limited (ESG) to undertake an assessment of emissions to atmosphere of particulate species from arrestment plant exhausts at their Coventry site. Measurements were made at the following release points:

- A1 Wet Arrestor exhaust
- A2 Dry Arrestor exhaust

Measurements were made on the 15 June 2010. This report describes the test work undertaken.

The on-site testing of ducted emissions of gaseous and particulate species by ESG is covered by accreditation by the United Kingdom Accreditation Service (UKAS) under UKAS Testing Laboratory No. 1015. Section 3.3 and Table 4c specify the measurements that are within the scope of this accreditation.

The results of the measurements made are summarised in Tables 1a and 1b.

2. **TEST PROGRAMME AND OBJECTIVES**

The overall objective of this test programme was to provide measurements of releases to atmosphere of particulate species from two release points as part of Sarginson's obligations with regard to routine monitoring of releases to atmosphere.

Sarginsons Precision Components requested that the following determinands be measured:

1. Total particulate matter (TPM)

In addition, measurements of the following determinands were made to enable correction of measured concentrations of the above determinands to plant reference conditions:

- 2. Oxygen (O_2)
- 3. Water vapour (H_2O)

It was also requested that flow measurements (exhaust gas velocity and temperature) be undertaken during each sampling period as appropriate.

All of the above determinands were measured at the exhausts of the wet and dry arrestors.

Tables 2a and 2b summarise the test schedule.

Tables 3, 4a, 4b and 4c summarise the methods and resources employed in the execution of these measurements and their accreditation status with regard to UKAS and MCERTs.

3. METHODS OF MEASUREMENT

The methodology employed for the measurement of selected releases to atmosphere was agreed with Sarginsons Precision Components.

3.1 Measurements of Releases to Atmosphere

Sampling for total particulate matter was undertaken in accordance with the requirements of BS EN 13284-1⁽¹⁾ using United States Environmental Protection Agency (US EPA) Method 5-type sampling equipment. One determination was undertaken at each release point, each over a sampling period of around 60 minutes.

The waste gas concentration of oxygen was measured using a continuous zirconium cell oxygen analyser in accordance with BS EN 14789⁽²⁾.

Measurements of the waste gas water vapour content were undertaken using a gravimetric technique in accordance with BS EN $14790^{(3)}$. One determination of water vapour was made at each release point. The result of the measurement was used to correct other, corresponding measurements, where appropriate, to plant reference conditions.

Measurements of the exhaust gas conditions (i.e. exhaust gas velocity and temperature) were undertaken at the beginning of testing at each point, and during testing, as appropriate. Measurement of the exhaust gas temperature was undertaken using a type K thermocouple and digital temperature indicator. Measurements of the exhaust gas velocity were made using an ellipsoidal ('L' type) Pitot static tube in conjunction with an inclined liquid manometer. Temperature and velocity traverses were undertaken as specified within BS EN 13284-1⁽¹⁾.

Tables 4a and 4b present a summary of the sampling and analysis methodology employed in the measurements described above.

3.2 **Sampling Locations**

At the sampling location associated with the wet arrestor exhaust (Figure 1), the sampling plane is of square cross section, of depth 0.47 m and sampling plane area 0.22 m^2 . 2 off 4" BSP sockets (A & B) are available for sampling access.

BS EN 13284-1⁽¹⁾ requires that sampling be undertaken at a minimum of 4 points over a minimum of two sample lines for this geometry of sampling plane. Sampling for particulate matter was undertaken at two points on each of the two available lines in accordance with the requirements of the standard.

Determinand	Sampling Socket	Sampling positions on line (fraction of depth, D)
TPM	A & B	0.25, 0.75
Oxygen	А	0.5
Water vapour	A & B	0.25, 0.75
Flow	A & B	0.05, 0.15, 0.25, 0.35, 0.45, 0.55, 0.65,
		0.75, 0.85 & 0.95

Sampling locations at the wet arrestor exhaust

At the dry arrestor exhaust, the sampling plane is of rectangular cross section, of depth 0.83 m and sampling plane area 0.68 m². 2 off 4" BSP sockets (A & B) are available for sampling access.

BS EN 13284-1⁽¹⁾ requires that sampling be undertaken at a minimum of 4 points over a minimum of two sample lines for this geometry of sampling plane. Due to the presence of baffles just below the sampling socket there was little indication of flow along line B. As such all sampling was restricted to the sampling line accessible through socket A. Sampling for particulate matter was undertaken at the required two points along line A only. This does not comply with the requirements of the standard.

Sampling locations at the dry arrestor exhaust

Determinand	Sampling Socket	Sampling positions on line (fraction of depth, D)
TPM	А	0.25 & 0.75
Oxygen	А	0.5
Water vapour	А	0.5
Flow	А	0.05, 0.15, 0.25, 0.35, 0.45, 0.55, 0.65,
		0.75, 0.85 & 0.95

3.3 Accreditation of Measurements

The accreditation status of the measurements made under the UKAS scheme is summarised in Table 4c. Table 4c also summarises the MCERTs compliance status of the methodology employed.

All sampling and associated analytical activities were undertaken by ESG.

All measurements are UKAS accredited to the MCERTs performance standard.

4. **RELEASES TO ATMOSPHERE**

The results of the measurements made are summarised in Tables 1a and 1b and are reported in detail in the monitoring report forms (see Contents). In these tables measurements are reported at plant reference conditions of 273K temperature and 101.3 kPa pressure (Standard Temperature and Pressure (STP)) in a wet gas with no correction for oxygen content.

These tables also provide estimates of the discharge rate of each determinand and the measurement uncertainty expressed on a 95% confidence limit basis. It should be noted that discharge rates for all determinands are based on the volume flow rates measured at the beginning of testing.

Full details of all measurements made are presented in the monitoring report forms at the end of this report. Each determination has been given a unique reference number comprising two elements e.g. A1FL

Plant	Determinand
A1	FL
Wet arrestor	Flow

A1TPM and A2TPM summarise the results of the measurements of total particulate matter at the wet arrestor and dry arrestor exhaust respectively. One determination was undertaken at each point. The result of each measurement is presented, together with the corresponding discharge rate.

A1FL and A2FL summarise the measurements of duct gas conditions (i.e. temperature, velocity and flow) made at the wet arrestor and dry arrestor exhausts respectively. Measurements were made at the beginning of testing.

5. **RESULTS AND DISCUSSION**

In the following discussion the compliance of the measurements with the requirements of the relevant standards is discussed, along with any issues affecting the representativeness of the measurements made. All emissions of particulate species are presented as a concentration at the applicable plant reference conditions unless otherwise stated.

5.1 Emissions from the wet arrestor exhaust

The results of the measurements made at the wet arrestor exhaust are summarised in Table 1a.

The measurement for total particulate matter complied fully with the main procedural requirements of BS EN $13284-1^{(1)}$.

5.2 Emissions from the dry arrestor exhaust

The results of the measurements made at the dry arrestor exhaust are summarised in Table 1b.

As discussed in Section 3.2, the sampling positions employed did not comply fully with BS EN $13284-1^{(1)}$.

With the exception of the failure to comply meet the sampling position requirements of BS EN $13284-1^{(1)}$, the measurement for total particulate matter complied with the main procedural requirements of the standard.

It is not considered that the noted non-compliances had a significant impact on the representativeness of the measurements made. In all cases uncertainties have been adjusted, where appropriate, to take into account deviations from the requirements of the standard methods.

6. **REFERENCES**

- 1. BS EN 13284-1, 'Stationary source emissions Determination of low range mass concentration of dust Part 1: Manual gravimetric method', 2002.
- 2. BS EN 14789:2005 'Stationary source emissions Determination of volume concentration of oxygen (O₂) Reference method: Paramagnetism', 16 January 2006
- 3. BS EN 14790:2005 'Stationary source emissions Determination of the water vapour in ducts', 16 January 2006

TABLE 1a

Summary of Measurements of Particulate Releases

A1 - Wet arrestor exhaust – 15 June 2010

Determinand	Reported as	Test No. (A1)	Concentration	1	Release kg/h
Total particulate matter	TPM	TPM	6 ± 5	mg/m ³	0.04

Notes to Table 1a:

1. Waste gas concentrations are expressed at the standard reference conditions for this plant of STP in a wet gas with no correction for oxygen content. The measured average oxygen and water vapour contents were:

Date		15 June 2010
Oxygen	% by volume, dry	20.8
Water vapour	% by volume	1.0

These values have been employed to correct the measurements of required determinands to plant reference conditions.

- 2. Uncertainty is the likely range of the true value around the measured value and is determined in accordance with Internal Procedure 55 and the relevant uncertainty policies. These procedures follow the guidance in BS EN ISO 14956:2002 and ENV 13005 (GUM). For all determinands the uncertainty is expressed in the measurement units on a 95% confidence limit basis.
- 3. The reported concentration of oxygen is the arithmetic mean of all spot measurements made during the sampling period. The reported concentration of water vapour is the result of a single determination.
- 4. The measured exhaust gas conditions on the day of testing were:

Date		15 June 2010
Test		A1FL
Time start		1400
Time end		1409
Velocity	m/s	9.8
Temperature	°C	26
Flow	m ³ /s, ref cond.	1.94

The above values have been used in the calculation of the discharge rates of measured determinands (see monitoring report forms).

TABLE 1b

Summary of Measurements of Particulate Releases

Dry arrestor exhaust – 15 June 2010

Determinand	Reported as	Test No. (A2)	Concentration	Release kg/h
Total particulate matter	TPM	TPM	$4 \pm 3 $ mg/m ³	0.15

Notes to Table 1b:

1. Waste gas concentrations are expressed at the standard reference conditions for this plant of STP in a wet gas with no correction for oxygen content. The measured average oxygen and water vapour contents were:

Date		15 June 2010
Oxygen	% by volume, dry	20.8
Water vapour	% by volume	0.9

These values have been employed to correct the measurements of required determinands to plant reference conditions.

- 2. Uncertainty is the likely range of the true value around the measured value and is determined in accordance with Internal Procedure 55 and the relevant uncertainty policies. These procedures follow the guidance in BS EN ISO 14956:2002 and ENV 13005 (GUM). For all determinands the uncertainty is expressed in the measurement units on a 95% confidence limit basis.
- 3. The reported concentration of oxygen is the arithmetic mean of all spot measurements made during the sampling period. The reported concentration of water vapour is the result of a single determination.
- 4. The measured exhaust gas conditions on the day of testing were:

Date		15 June 2010
Test		A2FL
Time start		1500
Time end		1515
Velocity	m/s	18.4
Temperature	°C	29
Flow	m^3/s , ref cond.	11.10

The above values have been used in the calculation of the discharge rates of measured determinands (see monitoring report forms).

TABLE 2a

Test Programme – A1 Wet arrestor exhaust

Determinand	Determination		Ti	me	Duration
	No.	Code	Start	End	(min)
15 June 2010					
Total particulate matter	1	A1TPM	1435	1540	60
Water vapour	1	A1H2O	1435	1507	32
Oxygen	1	-	1435	1540	60
Flow	1	A1FL	1400	1409	9

TABLE 2b

Test Programme – A2 Dry arrestor exhaust

Determinand	Deter	Determination		me	Duration
	No.	Code	Start	End	(min)
15 June 2010					
Total particulate matter	1	A2TPM	1604	1704	60
Water vapour	1	A2H2O	1625	1715	50
Oxygen	1	-	1604	1704	60
Flow	1	A2FL	1500	1515	15

1. The sampling time is the period over which the measurements were undertaken. The sampling duration is the actual period during the sampling time, for which the ducted gases were sampled.

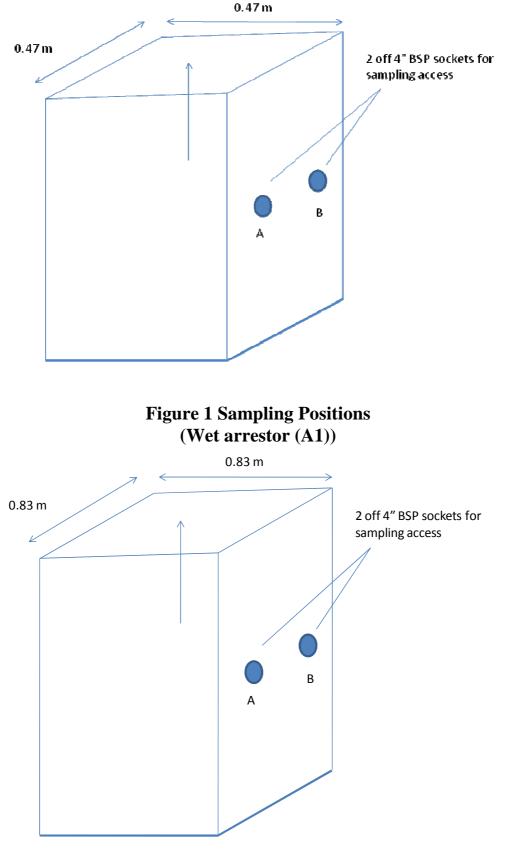


Figure 2 Sampling Positions (Dry arrestor (A2))

MEASUREMENT OF PARTICULATE EMISSIONS FROM ARRESTMENT PLANT AT SARGINSONS PRECISION COMPONENTS, COVENTRY

Part 2 Supporting Information

Sampling on 15 June 2010

Sampling at Sarginsons Precision Components Torrington Avenue Coventry CV4 9AG

Report prepared for

Report prepared by

Sarginsons Precision Components Torrington Avenue Coventry CV4 9AG Environmental Scientifics Group Limited Unit D, Acacia Building Vantage Point Business Village Mitcheldean Gloucestershire GL17 0DD

TABLE 3

Function	Name	MCERTs					
		MM	Level	Technical Endorsements			nts
				1	2	3	4
Divisional Manager	N Ford	02084	2	12/13	12/13	12/13	12/13
Operations Manager	M Davies	02087	2	03/13	06/13	06/13	08/13
Team leader	J Ward	02080	2	03/13	05/13	08/11	03/11
Technician	L Mears	08995	1		05/15		

Summary of UKAS and MCERTs Compliance - Staff Competency

1. The qualifications, under the MCERTs scheme, of all staff involved in the execution of the work reported herein are presented above.

TABLE 4a

Summary of Sampling Methods

Determinand	Sampling method	
		No.
TPM	BS EN 13284-1 using EPA 5-type equipment	AE 104
Velocity	BS EN 13284-1 using a Pitot static tube	AE 122
O ₂	BS EN 14789 (zirconium cell analyser)	IEM 002
H ₂ O	BS EN 14790	AE105

TABLE 4b

Summary of Analytical Methods

Determinand	Analytical method	Analysis house
TPM	Gravimetric determination	ESG
H ₂ O	Gravimetric determination	ESG

1. A description of the sampling and analytical methods employed in the execution of the measurements reported herein is presented above. All sampling and associated analytical activities were undertaken by ESG.

TABLE 4c

Summary of UKAS and MCERTs Compliance - Sampling and Analytical Methods

Determinand	Sam	oling	Analysis		
	UKAS Accreditation			MCERTs Compliant	
TPM	1015	\checkmark	1015	\checkmark	
Velocity	1015	\checkmark	not ap	plicable	
O ₂	1015	\checkmark	1015	\checkmark	
H ₂ O	1015	\checkmark	1015	\checkmark	

- 1. The above table provides details of the UKAS accreditation status and compliance with the requirements of MCERTs for the work reported herein.
- 2. Where an activity is UKAS accredited the accreditation number of the laboratory is provided. Where an activity is not accredited this is marked as 'not accredited'. Where a measurement has a sampling and an analytical component, UKAS accreditation only applies if both activities are accredited.
- 3. An activity is determined to comply with the requirements of MCERTs where the laboratories involved have UKAS accreditation to the MCERTs performance standard for the method employed.

SCIENTIFICS MONITORING REPORT FORM PITOT TRAVERSE (BS EN 13284-1)

Company	Sarginsons	Date	15-Jun-10
Site	Coventry	Test Ref	A1FL
Sample point	A1 - Wet Arrestor	Time Start	1400
Test carried out by	J Ward & L Mears	Time End	1409

SAMPLING PLANE GEOMETRY

Geometry of duct Rectai		
Dimension traversed by sampling probe (D)	m	0.47
Other dimension (if applicable)	m	0.4700
Cross sectional area of sampling plane (A)	m²	0.2209

MOLECULAR WEIGHT & DENSITY DETERMINATION

Duct gas conditions

Ambient temperature (T _a)	°C	22.00
Duct static gas pressure	kPa	0.00
Average duct gas temperature (T _{duct})	°c	26.00
Barometric pressure (P _m)	kPa	99.40

Calculation of molecular weight from assumed gas composition

Gas	Vol%	Vol%	Dry Mol Wt	Wet Mol Wt
	Dry gas	Wet gas	g/gm ole	g/gm ole
CO ₂	0.00	0.00	0.00	0.00
O ₂	20.80	20.59	6.66	6.59
СО	0.00	0.00	0.00	0.00
N ₂	79.20	78.39	22.18	21.95
H ₂ O		1.02		0.18
		Total	28.83	28.72

Calculation of dry and wet gas density from molecular weight results

Dry density	kg/m ³	1.29	At STP
Wet density	kg/m ³	1.28	(0°C & 101.3 kPa)
Dry density	kg/m ³	1.15	At Duct Conditions
Wet density (ρ _a)	kg/m ³	1.15	(see above)
Wet specific gravity (sg)		0.99	

Calculation of dew point

Sulphur dioxide concentration	ppm	0
Water dew point	°C	8
Sulphuric acid dew point	°C	n.a.

Compliance with BS EN 13284-1, 5.2

No negative local gas flow Ratio of highest to lowest flow is less than 3:1 Minimum Pitot static reading is greater than 5 Pa Angle of gas flow with respect to the axis is below 15 degrees

PITOT TRAVERSE

Details of measurement equipment and supplementary measurements

Manometer calibration temperature	°C	17
Scale factor		0.1
Pitot type ('L' or 'S' type)		L
Pitot calibration factor (C _p)		1
Pitot reference No.		P1402
Manometer units		kPa
Manometer reference No.		P1229
Thermocouple reference No.		P1627
Timer reference No.		P1153
Barometric gauge reference No.		P154
Temperature correction factor		-0.00475

Measurement strategy

-	
No. of measurement lines	2

Measurements and calculation of duct gas velocity

Traverse	Port	Distance from inside	Scale Pitot	Differential	emperature)	Angle of	Gas
Point		wall of duct	Reading	Pressure	(T _{duct})	$\sqrt{h_c}$	gas flow	Velocity
		(fraction of D, (m))		(h _c)			<15°	(V _{duct})
			kPa	Pa	°C			m/s
1	Α	0.05 (0.024)	1.01	100.52	26	10.03	Yes	13.16
2	Α	0.15 (0.071)	0.94	93.55	26	9.67	Yes	12.70
3	Α	0.25 (0.118)	0.55	54.74	26	7.40	Yes	9.71
4	Α	0.35 (0.165)	0.36	35.83	26	5.99	Yes	7.86
5	Α	0.45 (0.212)	0.30	29.86	26	5.46	Yes	7.17
6	Α	0.55 (0.259)	0.13	12.94	26	3.60	Yes	4.72
7	Α	0.65 (0.306)	0.18	17.91	26	4.23	Yes	5.56
8	Α	0.75 (0.353)	0.41	40.81	26	6.39	Yes	8.39
9	Α	0.85 (0.4)	0.67	66.68	26	8.17	Yes	10.72
10	Α	0.95 (0.447)	0.98	97.53	26	9.88	Yes	12.97
11	В	0.05 (0.024)	0.57	56.73	26	7.53	Yes	9.89
12	В	0.15 (0.071)	0.69	68.67	26	8.29	Yes	10.88
13	В	0.25 (0.118)	0.71	70.66	26	8.41	Yes	11.04
14	В	0.35 (0.165)	0.68	67.68	26	8.23	Yes	10.80
15	В	0.45 (0.212)	0.73	72.65	26	8.52	Yes	11.19
16	В	0.55 (0.259)	0.64	63.70	26	7.98	Yes	10.48
17	В	0.65 (0.306)	0.65	64.69	26	8.04	Yes	10.56
18	В	0.75 (0.353)	0.60	59.72	26	7.73	Yes	10.15
19	В	0.85 (0.4)	0.54	53.74	26	7.33	Yes	9.62
20	В	0.95 (0.447)	0.40	39.81	26	6.31	Yes	8.28
					T _{Duct}	√h _c		
			Averages		26.00	7.46		

CALCULATION OF VELOCITY & FLOW RATE

 $V_{Duct}=C_{p} \ x \ (1\text{-}\ \epsilon) \ x \ \sqrt{2}/\rho_{a} x \ \sqrt{h} \ (\text{Reference BS 1042:Section 2.1:1983 (ISO 3966), pages 8\&9)}$

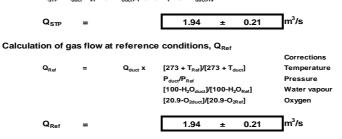
m³/s

0.23

where	$V_{Duct} =$ $K_{pt} =$ $1-\epsilon =$ $\rho_a =$ h =	pitot calibration facto compressibility corre wet gas density unde	gas velocity at sampling point (m/s) pitot calibration factor (dimensionless) compressibility correction (assumed constant at 0.995) wet gas density under duct conditions (kg/m ³) differential pressure (Pa)						
Average	e gas velo	ocity (V _{Ducta} =	9.79	±	1.00	m/s			
Average	e volume	flowrate (Q _{Duct}) =	V _{Ducta} x A						

Conversion of actual duct gas flow to reference conditions

=


Actual Duct Flow Conditions			Reference Conditions		
Average temperature (T _{duct})	°c	26.00	Temperature (T _{Ref})	°C	0
Total pressure (P _{duct})	kPa	99.40	Pressure (P _{Ref})	kPa	101.3
Oxygen (O _{2duct})	% vol,dry	20.80	Oxygen (O _{2Ref})	% vol, dry	20.8
Water vapour (H ₂ Od _{uct})	% vol	1.02	Water vapour (H ₂ O _{Ref})	% vol	1.02

2.16

±

Calculation of gas flowrate at STP, Q_{STP}

 $Q_{STP} = Q_{duct} \times [(273 \times P_{duct})/(101.3 \times (273 + T_{duct}))]$

Measurements from other tests

Determinand	Test Reference
Oxygen	Spots - Horiba P1089
Water vapour	A2H20

Uncertainty Calculation Parameters

Standard uncertainty for pressure measurement (U12)	5.0 %
Standard uncertainty for Pitot coefficient (U13)	1.0 %
Standard uncertainty for density estimate (U13)	1.0 %
Standard uncertainty for linear measurement (U14)	1.0 %

Uncertainty budget

Uncertainties		
Pressure measurement (m _p)	%	5.00
Pitot coefficicient (m _K)	%	1.00
Gas density estimate (m _r)	%	1.00
Total for velocity measurement (U _v)	%	5.20
Velocity at 95% confidence interval (U _{v95})	%	10.18
Linear measurement (m _l)	%	1.00
Total for flowrate measurement (U _f)	%	5.49
Flow rate at 95% confidence interval (U _{f95})	%	10.76

Based on Procedure 55 and Uncertainty Policies 13 & 14

(in accordance with requirements of BS EN ISO 14956:2002 and ENV 13005 (GUM))

```
\begin{split} & U_{\nu} = \sqrt{m_{p}}^{2} + {m_{K}}^{2} + {m_{r}}^{2} \\ & U_{\nu95} = 1.96 \ x \ U_{\nu} \\ & U_{f} = \sqrt{U_{\nu}}^{2} + 2{m_{I}}^{2} \\ & U_{f95c} = 1.96 \ x \ U_{f} \end{split}
```

Prepared by: J Ward

Checked by:

L Mears

CALCULATION OF NOZZLE SIZE & K FACTOR

Exhaust & sample gas conditions

Desired sampling rate at orifice (SR $_{o}$)	21.2 l/min	0.749	ft ³ /min
Expected meter outlet temperature (T _m)	20 °C		

(guide is a sampling rate of 0.75 ft^3 /min or 21.2 l/min at the orifice)

Conditions at nozzle		Conditions at orifice/meter	
Sampling rate (SR _n)	21.86 l/min	Sampling rate (SR _o)	21.20 l/min
Temperature (T _{duct})	26.00 °C	Temperature (T _a)	20.00 °C
Pressure (P _{duct})	99.40 kPa	Pressure (P _m)	99.40 kPa
Water vapour (H ₂ O _{duct}	1.02 %	Water vapour (H ₂ O _m)	0 %
Molecular weight (M _{duct})	28.72	Molecular weight (M _m)	28.83

Orifice Parameters

Orifice plate coefficient (∆H _@)	2.3847	" w.g.

Determination of nozzle diameter

based on isokinetic sampling and the average gas velocity

 $D_{nr} = 2000 \text{ x} \sqrt{[SR_n/V_{duct} \text{ x} \pi \text{ x} 60000]}$

where D_{nr} is the recommended nozzle diameter (mm)

Recommended nozzle diameter (D _{nr}	=	6.882	mm
Diameter of nozzle selected (D_n)	=	6	mm

Determination of K Factor

based on preliminary exhaust gas conditions

K Factor is a proportionality factor relating the pressure drop measured with the Pitot tube in the duct (h) with the corresponding pressure drop at the orifice (Δ H), i.e.

 $\Delta H = K * h$

 $K = 8.038 \text{ x } 10^{-5} \text{ x } C_p^{-2} \text{ x } \Delta H_{\textcircled{B}} \text{ x } D_n^{-4} \text{ x } (M_m/M_{duct}) \text{ x } [(100-H_2O_{duct})/(100-H_2O_m)]^2. (T_m + 273/T_{duct} + 273).(P_{duct}/P_m) \text{ (I } 100-H_2O_{duct})/(100-H_2O_m)]^2. (T_m + 273/T_{duct} + 273).(P_{duct}/P_m) \text{ (I } 100-H_2O_{duct})/(100-H_2O_m)]^2. (T_m + 273/T_{duct} + 273).(P_{duct}/P_m) \text{ (I } 100-H_2O_{duct})/(100-H_2O_m)]^2. (T_m + 273/T_{duct} + 273).(P_{duct}/P_m) \text{ (I } 100-H_2O_{duct})/(100-H_2O_m)]^2. (T_m + 273/T_{duct} + 273).(P_{duct}/P_m) \text{ (I } 100-H_2O_{duct})/(100-H_2O_m)]^2. (T_m + 273/T_{duct} + 273).(P_{duct}/P_m) \text{ (I } 100-H_2O_{duct})/(100-H_2O_m)]^2. (T_m + 273/T_{duct} + 273).(P_{duct}/P_m) \text{ (I } 100-H_2O_{duct})/(100-H_2O_m)]^2. (T_m + 273/T_{duct} + 273).(P_{duct}/P_m) \text{ (I } 100-H_2O_{duct})/(100-H_2O_m)]^2. (T_m + 273/T_{duct} + 273).(P_{duct}/P_m) \text{ (I } 100-H_2O_{duct})/(100-H_2O_m)]^2. (T_m + 273/T_{duct} + 273).(P_{duct}/P_m) \text{ (I } 100-H_2O_{duct})/(100-H_2O_m)]^2. (T_m + 273/T_{duct} + 273).(P_{duct}/P_m) \text{ (I } 100-H_2O_{duct})/(100-H_2O_m)]^2. (T_m + 273/T_{duct} + 273).(P_{duct}/P_m) \text{ (I } 100-H_2O_{duct})/(100-H_2O_m)]^2. (T_m + 273/T_{duct} + 273).(P_{duct}/P_m) \text{ (I } 100-H_2O_{duct})/(100-H_2O_m)]^2. (T_m + 273/T_{duct} + 273).(P_{duct}/P_m) \text{ (I } 100-H_2O_{duct})/(100-H_2O_m)]^2. (T_m + 273/T_{duct} + 273).(P_{duct}/P_m) \text{ (I } 100-H_2O_m)]^2. (T_m + 273/T_{duct} + 273).(P_{duct}/P_m) \text{ (I } 100-H_2O_m)]^2.$

where $\Delta H_{@}$ is the orifice plate coefficient (mm w.g.)

K Factor	=	6.0811
K Factor (independent of C _ρ)	=	6.0811

SCIENTIFICS MONITORING REPORT FORM TOTAL PARTICULATE MATTER to BS EN 13284-1/BS ISO 9096

Company Site

Sample point

A1TPM

Test Ref

Test carried out by
SAMPLING TIMES

Determination	TPM
Date	15-Jun-10
Time Start	1435
Time End	1540
Duration (t) min	60

Sarginsons

A1 - Wet Arrestor

J Ward & L Mears

Coventry

Sampling plane

Dimension traversed by sampling probe (D)	m	0.47
Cross sectional area of sampling plane (A)	m²	0.22

Duct gas conditions

Determination		ТРМ
Ambient temperature (T _{Amb})	°C	22.0
Average duct gas temperature (T _{duct})	°C	26.0
Duct static gas pressure (P _{Static})	kPa	0.00
Barometric pressure (P _{Baro})	kPa	99.40
Volume flow rate @ ref. conditions (Q _{Ref}) r	n³/s	1.94
Gas compressibility correction (ε)		0.995
Wet gas density (ρ _a)		1.15
Exhaust gas conditions measurements		A1FL

Reference conditions

Determination		TPM
Actual Duct Flow Conditions		
Average temperature (T _{duct})	°C	26.0
Total pressure (P _{duct})	kPa	99.40
Oxygen (O _{2duct})	% vol,dry	20.80
Water vapour (H ₂ O _{duct})	% vol	1.02
Reference Conditions		
Temperature (T _{Ref})	°C	0
Pressure (P _{Ref})	kPa	101.3
Oxygen (O _{2Ref})	% vol, dry	20.8
Water vapour (H ₂ O _{Ref})	% vol	1.02

Sampling conditions

Determination		ТРМ
Nozzle diameter (d) Ti18 Titanium	mm	6.000
Initial gas meter reading	7.807	
Final gas meter reading	8.805	
Sampled volume (SV _M)	m³	0.998

Calculation of sample gas volume at reference conditions, SV_{Ref}

${\rm SV}_{\rm Ref}$	=	SV _{Meter} x γ x	[273 + T _{Ref}]/[273 + T _{Meter}] P _{Bar} /P _{Ref} [100-H ₂ O _{Meter}]/[100-H ₂ O _{Ref}] [20.9-O _{2Duce}]/[20.9-O _{2Ref}]
			[20.9-O _{2Duct}]/[20.9-O _{2Ref}]

Determination		TPM
Sampled volume @ ref. conditions (SV _{Ref})	m³	0.933

Prepared by: J Ward

Checked by:

L Mears

Corrections Temperature Pressure Water vapour Oxygen

Sarginsons Precision Components Coventry

SAMPLING DATA TPM

Initial	-	motor	1

Initial gas	meter r	eading		7807]i	Start Tim	e	1435							
Distance		Time of	Run time	Gas	Pitot	Orifice A	lcm w.g.	Isokinetic			Tempe	ratures			Oxygen
from	Port	Day		meter	Reading	Desired	Actual	difference	Gas (T _{duct})	Probe	Filter	Mete	r (T _M)	Impinger	Content
Duct Wall				reading	(h)	(∆H _d)	(∆H _a)	$(\Delta H_a / \Delta H_d)$	(T _{duct})	(T _P)	(T _F)	Inlet	Outlet	(T _{imp})	%, v/v, dry
Fraction of D		h:mm	mm	1	cm w.g.	=h x K _i x Cp ²		%	°C	°C	°C	°C	°C	°C	
0.250	A	1435	0	7807	0.8	3.43	3.4	99	26	26	26	21	21	n/a	20.8
		1440	5	7901	0.92	3.95	3.8	96	26	26	26	21	21	n/a	20.8
		1445	10	7997	0.96	4.12	4	97	26	26	26	21	21	n/a	20.8
0.750	В	1450	15	8103	0.42	1.80	1.8	100	26	26	26	21	21	n/a	
		1455	20	8154	0.48	2.06	2	97	26	26	26	22	21	n/a	20.8
		1500	25	8213	0.46	1.97	2	101	26	26	26	22	21	n/a	
0.250	A	1510	30	8282	0.8	3.43	3.4	99	26	26	26	22	21	n/a	20.8
		1515	35	8372	0.78	3.35	3.2	96	26	26	26	23	21	n/a	
		1520	40	8462	0.8	3.43	3.4	99	26	26	26	23	22	n/a	20.8
0.750	В	1525	45	8552	0.82	3.52	3.4	97	26	26	26	23	21	n/a	
		1530	50	8633	0.8	3.43	3.4	99	26	26	26	23	22	n/a	20.8
		1535	55	8718	0.8	3.43	3.4	99	26	26	26	24	22	n/a	
		1540	60	8805											
	Average	s							26.0	26.0	26.0	21	1.6	#DIV/0!	20.8

Final gas meter reading

1540 End Time

Equipment used

Item	File No.
Control box	P1268
Meter coefficient (γ)	1.017
K factor, (K, independent of Cp)	6.081
Orifice plate pressure units	cm w.g.
Pitot differential pressure units	cm w.g.
Pitot	S Type
Pitot coefficient (C _p)	0.84
Probe liner thermocouple Titanium	N/A
Duct gas thermocouple	P1287
Oven thermocouple	N/A
Impinger exit thermocouple	N/A
Timer	P733

Leak check

	Start	End
Start Time	1425	1544
End Time	1427	1546
Initial meter reading m	7.8066	8.8054
Final meter reading m	7.807	8.8056
Duration of leak test min	2	2
Pump vacuum "He	-15	-15
Leak rate Vmir	0.2	0.1
Less than 2% of normal sampling rate?	Yes	Yes

8805 I

Glassware

Clean Yes Date 15.06.10 Prepared by LM

SAMPLELOG

Determination	Method blank	Field blank	Sample						
Particulate phase									
Filter No.		02671	02668						
Rinsings No.		02671W	02668W						
Vapour phase (if o	collected)								
First stage	No.								
-	Volume (ml)								
	Туре								
Final stage	No.								
-	Volume (ml)								
	Туре								

Approach to isokinetic sampling

Average gas velocity (V _{duct})	9.3 m/s
Nozzle diameter (D _n)	6.000 mm
Sampling time (t)	60 min
Theoretical isokinetic sample volume SV _t	946.80 I
Actual sample volume (SV _a)	1040.96 I
Approach to isokinetic sampling (∆I)	109.9 %

Test Ref A1TPM

where Vduct is the average duct velocity based on the above measurements Vocas C_{g} values and the second values of the advecting contents of the second values of

SV_z = V_{duct} x π x [D₂/2000]² x t x 60 x 1000 Sv_a is the sample volume at duct conditions SV_a = SV_m x γ x [(273 + T_{duct})/(273 + T_m)] x (P_{Barr}/P_{duct}) x (100 - H₂O_m)/(100-H₂O_{duct})

Determination of exhaust gas flow rate

based on measurements at sample points only

Flow rate at duct conditions (Q _{duct})	2.05 m ³ /s
Flow rate at STP (Q _{STP})	1.84 m ³ /s
Flow rate at reference conditions (Q _{Ref})	1.84 m ³ /s

where

$$\begin{split} & Q_{duct} = V_{duct} \ge A \\ & Q_{STP} = Q_{duct} \ge [(T_{Ref} + 273)/(T_{duct} + 273)] \ge (P_{Baro}/P_{Ref}) \end{split}$$
Q_{Ref} = Q_{STP} x [(20.9-O_{2Ref})/(20.9-O_{2duct})] x [(100-H₂O_{duct})/(100-H₂O_{Ref})]

PARTICULATE WEIGHINGS

Test Ref A1TPM

Filters

Determination		Method	Field	TPM
		Blank	Blank	
Filter No.		0	02671	02668
Pre-sampling conditioning temperature (±5°C)	°C	180	180	180
Post-sampling conditioning temperature (±5°C)	°C	160	160	160
Diameter	mm	110	110	110
Material		Quartz	Quartz	Quartz
Pre-sampling weights				
after 1 min	g		0.0403	0.0407
after 2 min	g		0.0402	0.0407
after 3 min	g		0.0402	0.0407
Weight extrapolated to zero time (M _{fi0})	g		0.0403	0.0407
Post-sampling weights				
after 1 min	g		0.0403	0.0435
after 2 min	g		0.0403	0.0435
after 3 min	g		0.0403	0.0434
Weight extrapolated to zero time (M _{ff0})	g		0.0403	0.0436

Rinsings

Pre-sampling conditioning temperature (±5°C)	°C	180	180	180
Post-sampling conditioning temperature (±5°C)	°C	160	160	160
Pre-sampling weights (container only)	_			•
after 1 min	g		67.9122	70.3615
after 2 min	g		67.9121	70.3615
after 3 min	g		67.9121	70.3615
Weight extrapolated to zero time (M _{ri0})	g		67.9122	70.3615
Post-sampling weights (container and evaporated rins	ings)			
after 1 min	g		67.9136	70.3642
after 2 min	g		67.9135	70.3642
after 3 min	g		67.9134	70.3642
Weight extrapolated to zero time (M _{rf0})	g		67.9137	70.3642

Summary

Determination		Method	Field	TPM
		Blank (M _{mb})	Blank	
Mass collected on filter ($M_{f} = (M_{ff0} \cdot M_{fi0} \cdot M_{fmb})$)	g	0.0000	0.0000	0.0029
Mass collected in rinsings (M _r = (M _{rf0} -M _{ri0} -M _{rmb)})	g	0.0000	0.0015	0.0027
Total mass collected ($M = M_f + M_r$)	g	0.0000	0.0014	0.0056

Uncertainty Calculation Parameters

٩

Standard uncertainty for gas volume measurement (U6)	2.9 %
Standard uncertainty for filter weighing (U17)	0.57 mg
Standard uncertainty for washings weighing (U17)	0.50 mg
Limit of detection for filter weighing (U17)	0.50 mg
Limit of detecion for washings weighing (U17)	0.50 mg
Standard uncertainty for oxygen correction (U11)	0.95 %
Standard uncertainty for gas flow measurement (U14)	5.7 %

Emission Limit Value

Emission limit value (ELV) at reference conditions	50 mg/m ³	

SUMMARY OF MEASUREMENTS

Test Ref A1TPM

Calculation of Particulate Concentration and Discharge Rate

Particulate concentration (C), $mg/m^3 = M \times 1000/ SV_{Ref}$

Discharge rate, kg/h = C x Q_{Ref} x 0.0036

Determination		Field Blank	TPM
Particulate concentration at reference conditions	mg/m ³	1.54	5.97
Uncertainty	mg/m ³	1.54	4.89
Particulate concentration at duct conditions (raw)	mg/m ³	1.38	5.35
Particulate discharge rate	kg/h	0.01	0.04
Uncertainty	kg/h	0.01	0.03

Note: Field blank results based on average sampling conditions

Uncertainty budget

Uncertainties		Field Blank	TPM
Volume measurement (m _{vol})	mg	0.04	0.16
Filter weighings (m _f)	mg	-0.03	1.66
Rinsings weighings (m _w)	mg	1.26	1.62
Total for uncorrected measurement (U _u)	mg	1.26	2.33
Correction to reference conditions (m _{corr})	mg	0.00	0.00
Total for corrected measurement (U _c)	mg	1.26	2.33
Concentration at 95% confidence interval (U_{95c})	mg/m ³	1.54	4.89

Based on Procedure 55 and Uncertainty Policies 11 & 17 (in accordance with requirements of BS EN ISO 14956:2002 and ENV 13005 (GUM))

COMPLIANCE WITH BS EN 13284-1:2002/BS ISO 9096 CONDITIONS

Flow conditions (BS EN 13284-1, 5.2 & BS ISO 9096, 5.3)

Standard	EN 13284-1
Angle of gas flow less than 15°	Yes
No local negative gas flow	Yes
Minimum differential pressure greater than 5 Pa	Yes
Ratio of highest to lowest local gas velocites less than 3:1	Yes

Compliance with BS EN 13284-1

Blank value is less than 10% of ELV (Clause 4f) Nozzle diameter greater than 6 mm (Clause 6.2.4) Average sampling rate was within -5% and +15% of isokinetic conditions (Clause 8.4) Leak rate is within 2% of sample rate (Clause 8.4)

SCIENTIFICS MONITORING REPORT FORM WATER VAPOUR DETERMINATION to BS EN 14790:2005

Company	Sarginsons	Test Ref	A1H20
Site	Coventry	Date	15-Jun-10
Sample point	A1 - Wet Arrestor	Time start	1435
Test carried out by	L Mears & J Ward	Time End	1507
		Duration, t (min)	32

Sampling Rate

Gas meter start reading (SV _{Mi})	I	40683.7500
Gas meter end reading (SV _{Mf})	-	40733.6600
Volume passed at meter conditions (SV _M =SV _{Mf} -SV _{Mi}))	m ³	0.0499
Sampling rate at meter conditions (SVM/t)	m³/min	0.0016

Sampling Conditions

Time	Gas M	Gas Meter	
	Temperature	Pressure	temperature
	T _M ,°C	P _M , kPa	°C
1440	19.0	99.4	n/a
1507	20.0	99.4	n/a
Average	19.5	99.4	#DIV/0!

Equipment

Gas meter	P496
Gas meter calibration factor	1.0006
Probe/heated line thermocouple	n/a
Barometer	P154
Timer	P733
Balance	P1244

Leak check

		Start	End
Time start		14:31	15:08
Time end		14:32	15:09
Start volume	I	40680.100	40733.660
End volume	I	40680.120	40733.670
Duration	mins	1	1
Leak rate	l/min	0.02	0.01
Leak rate <2% of sample rate?		Yes	Yes

Balance Check Weighings

Balance No.		P1244				
Check weight no.	P1244	P1244 P1244 P1244				
Certified weight	1000.0000	1000.0000	1000.0000			
Reading (g)	1000.0500	1000.0500	1000.0500			
Allowable tolerance (g)	1.0000	1.0000	1.0000			
Acceptable response	Yes	Yes	Yes			

Test Ref. A1H20

Collection of Water from Gas

Collection	Initial	Final	Mass
Stage (ci)	Mass(Mcii)	Mass (Mci _f)	gain (Mci)
	g	g	g
Container 1	59.950	60.310	0.360
Container 2	46.520	46.540	0.020
Container 3	44.370	44.370	0.000
Container 4			
Container 5			
Container 6			
Total (M)	150.840	151.220	0.380

Mass of water collected (M) = $\Sigma(Mc1_f-Mc1_i)...(Mci_f-Mci_i)$

Calculation of dry gas sample volume at STP (SV_{STP})

SV_M x (273/(273 + T_M) x (P_M/101.3) SV_{STP} =

Volume of dry gas sampled at STP (SV _{STP})	m ³ 0.0457

Calculation of water vapour content (H₂O_{duct})

where	H ₂ O _{duct} = MV _{STP} MW _{H2O}	100 x (M x MV _{STP} /MW _{H20})/[SV _{ST} molecular volume at STP (22.41) molecular weight of water (18 kg	2 m ³ /kgmole)	/MW _{H2}	o)]	
Water vapour	content (H ₂ O _{duct})	%	1.02	±	1.02	

Method performance

Water collection efficiency (ε=100-(Mci.100/M))	%	100.0
Water content in final container	%	0.0
Correction for collection efficiency (Corr _e)	%	0.0

Compliance with BS 14790

Uncertainty greater than 20% of measured value Clause 7.3) - outside standard Temperature at outlet is less than 4oC based on calculated dew point (Clause 6.4.2) Temperature at outer is less man 40-based on calculated dew point (clause 6.4 Leak rate is greater than 2% of sample flow rate (Clause 6.3) - outside standard Sampling duration is within minimum of 30 minutes (Clause 6.1) Sample volume is below minimum of 50 I (Clause 6.1) - outside standard Residual water content at outlet is below 1.25% (Clause 5.8) Sampling temperature fell below minimum of 120oC (Clause 5.2) - outside standard

Uncertainty Budget (based on BS 14790 and Uncertainty Policy U25)

Volume of sampled gas	V	0.046 m ³
Average temperature of gas at meter	Т	19.5 ℃
Average barometric pressure at meter	Р	994 mb
Sampling line leakage		0.015 m ³ /min
Duration of sampling	t	32 min
Total mass weighed	M	151.22 g

Source of uncertainty		Vi	alue	Value of standar	d uncertainty		e standard
						uncer	tainty (%)
Measurement of sample gas volume	u,V _m	2.0 %	uv	$u_s, V_m = \frac{d_s v}{\sqrt{3}}$	0.0005 m ³	u _r ,V _m	1.15
Measurement of sample gas temperature	u,T _m	1.0 %	u	$u_s, T_m = \frac{u(T+273)}{\sqrt{3}}$	1.6887 K	u _r , T _m	0.58
Measurement of absolute pressure	u,P _m	1.0 %	up	$u_s, P_m = \frac{u \cdot P}{\sqrt{3}}$	5.7389 mb	u _r , P _m	0.58
Leakage in sampling line	u,L	961.7 %	u	$u_s, L = \frac{uV}{\sqrt{3}}$	0.2540 m ³	u _r ,L	555.26
Measurement of weight - balance uncertainty	u,W _m	0.01 %	u _{wm}	$u_s, W_m = \frac{u_m M}{\sqrt{3}}$	0.0087 g		
Measurement of weight - balance repeatability	u,Wr	0.011 g	Uwr	u _s ,W _r = ^{u_{rr}}	0.0110 g		
Total measurement of weight	u,W	-	-	- u _s ,W =	0.0197 g	u _r ,W	5.19

Total standard relative uncertainty $u_r = \sqrt{u_r, V_m^2 + u_r, T_m^2 + u_r, P_m^2 + u_r, L^2 + u_r, W^2} + Corr_{\varepsilon}$			Corr₅	555.28 %	
Total relative uncertain	inty	Ur = 1.96 <i>u</i> r			100.00 %
Prepared by:	L Mears	Ch	necked by:	J Ward	

Prepared by:

Checked by: J Ward

SCIENTIFICS MONITORING REPORT FORM PITOT TRAVERSE (BS EN 13284-1)

Company	Sarginsons	Date	15-Jun-10
Site	Coventry	Test Ref	A2FL
Sample point	A2 - Dry Arrestor	Time Start	1500
Test carried out by	J Ward & L Mears	Time End	1515

SAMPLING PLANE GEOMETRY

Geometry of duct	Rectangula	
Dimension traversed by sampling probe (D)	m	0.83
Other dimension (if applicable)	m	0.8250
Cross sectional area of sampling plane (A)	m²	0.6806

MOLECULAR WEIGHT & DENSITY DETERMINATION

Duct gas conditions

Ambient temperature (T _a)	°C	22.00
Duct static gas pressure	kPa	-0.08
Average duct gas temperature (T _{duct})	°c	29.00
Barometric pressure (P _m)	kPa	99.40

Calculation of molecular weight from assumed gas composition

Gas	Vol%	Vol%	Dry Mol Wt	Wet Mol Wt
	Dry gas	Wet gas	g/gm ole	g/gm ole
CO ₂	0.00	0.00	0.00	0.00
O ₂	20.80	20.62	6.66	6.60
СО	0.00	0.00	0.00	0.00
N ₂	79.20	78.53	22.18	21.99
H ₂ O		0.85		0.15
		Total	28.83	28.74

Calculation of dry and wet gas density from molecular weight results

Dry density	kg/m³	1.29	At STP
Wet density	kg/m³	1.28	(0°C & 101.3 kPa)
Dry density	kg/m ³	1.14	At Duct Conditions
Wet density (ρ _a)	kg/m³	1.14	(see above)
Wet specific gravity (sg)		0.99	

Calculation of dew point

Sulphur dioxide concentration	ppm	0
Water dew point	°C	8
Sulphuric acid dew point	°C	n.a.

Compliance with BS EN 13284-1, 5.2

No negative local gas flow

Ratio of highest to lowest flow is less than 3:1 Minimum Pitot static reading is greater than 5 Pa Angle of gas flow with respect to the axis is below 15 degrees

PITOT TRAVERSE

Details of measurement equipment and supplementary measurements

Manometer calibration temperature	°C	17
Scale factor		0.1
Pitot type ('L' or 'S' type)		L
Pitot calibration factor (C _p)		1
Pitot reference No.		P1402
Manometer units		kPa
Manometer reference No.		P1229
Thermocouple reference No.		P1627
Timer reference No.		P1153
Barometric gauge reference No.		P154
Temperature correction factor		-0.00475

Measurement strategy

No. of measurement lines	1

Measurements and calculation of duct gas velocity

Traverse	Port	Distance from inside	Scale Pitot	Differential	emperatur	9	Angle of	Gas
Point		wall of duct	Reading	Pressure	(T _{duct})	$\sqrt{h_c}$	gas flow	Velocity
		(fraction of D, (m))		(h _c)			<15°	(V _{duct})
			kPa	Pa	°C			m/s
1	Α	0.05 (0.041)	2.03	202.04	29	14.21	Yes	18.76
2	Α	0.15 (0.124)	1.95	194.07	29	13.93	Yes	18.38
3	Α	0.25 (0.206)	2.08	207.01	29	14.39	Yes	18.99
4	Α	0.35 (0.289)	2.00	199.05	29	14.11	Yes	18.62
5	Α	0.45 (0.371)	1.98	197.06	29	14.04	Yes	18.52
6	Α	0.55 (0.454)	1.90	189.10	29	13.75	Yes	18.15
7	Α	0.65 (0.536)	1.85	184.12	29	13.57	Yes	17.91
8	Α	0.75 (0.619)	1.70	169.19	29	13.01	Yes	17.16
9	Α	0.85 (0.701)	2.00	199.05	29	14.11	Yes	18.62
10	Α	0.95 (0.784)	2.05	204.03	29	14.28	Yes	18.85
					T _{Duct}	√h _c		
			Averages		29.00	13.94		

CALCULATION OF VELOCITY & FLOW RATE

 $V_{Duct} = C_p \ x \ (1 - \epsilon) \ x \ \sqrt{2} / \rho_a x \ \sqrt{h} \ (\text{Reference BS 1042:Section 2.1:1983 (ISO 3966), pages 8\&9)}$

where	$V_{Duct} =$ $K_{pt} =$ $1-\varepsilon =$ $\rho_a =$ h =	gas velocity at sampling point (m/s) pitot calibration factor (dimensionless) compressibility correction (assumed constant at 0.995) wet gas density under duct conditions (kg/m³) differential pressure (Pa)				95)
Averag	e gas vel	ocity (V _{Duct≉} =	18.39	±	1.87	m/s
Averag	e volume	flowrate (Q _{Duct}) =	V _{Ducta} x A			

Conversion of actual duct gas flow to reference conditions

Actual Duct Flow Conditions Reference Conditions					
Average temperature (T _{duct})	°C	29.00	Temperature (T _{Ref})	°C	0
Total pressure (P _{duct})	kPa	99.32	Pressure (P _{Ref})	kPa	101.3
Oxygen (O _{2duct})	% vol,dry	20.80	Oxygen (O _{2Ref})	% vol, dry	20.8
Water vapour (H ₂ Od _{uct})	% vol	0.85	Water vapour (H ₂ O _{Ref})	% vol	0.85

Calculation of gas flowrate at STP, QSTP

Q_{STP} = Q_{duct} x [(273 x P_{duct})/(101.3 x (273 + T_{duct}))]

Q_{STP} =

11.10 ± 1.19 m³/s

Calculation of gas flow at reference conditions, Q_{Ref}

	,			
				Corrections
Q _{Ref}	=	Q _{duct} x	[273 + T _{Ref}]/[273 + T _{duct}]	Temperature
			P _{duct} /P _{Ref}	Pressure
			[100-H ₂ O _{duct}]/[100-H ₂ O _{Ref}]	Water vapour
			[20.9-O _{2duct}]/[20.9-O _{2Ref}]	Oxygen
Q _{Ref}	=		11.10 ± 1.19	m³/s

Measurements from other tests

Determinand	Test Reference
Oxygen	Spots - Horiba P1089
Water vapour	A2H20

Uncertainty Calculation Parameters

Standard uncertainty for pressure measurement (U12)	5.0 %
Standard uncertainty for Pitot coefficient (U13)	1.0 %
Standard uncertainty for density estimate (U13)	1.0 %
Standard uncertainty for linear measurement (U14)	1.0 %

Uncertainty budget

Uncertainties		
Pressure measurement (m _p)	%	5.00
Pitot coefficicient (m _K)	%	1.00
Gas density estimate (m _r)	%	1.00
Total for velocity measurement (U _v)	%	5.20
Velocity at 95% confidence interval (U _{v95})	%	10.18
Linear measurement (m _l)	%	1.00
Total for flowrate measurement (U _f)	%	5.49
Flow rate at 95% confidence interval (U _{f95})	%	10.76

Based on Procedure 55 and Uncertainty Policies 13 & 14 (in accordance with requirements of BS EN ISO 14956:2002 and ENV 13005 (GUM))

$$\begin{split} U_v &= \sqrt{m_p}^2 + {m_k}^2 + {m_r}^2 \\ U_{v\,95} &= 1.96 \text{ x } U_v \\ U_f &= \sqrt{U_v}^2 + 2{m_l}^2 \\ U_{f95c} &= 1.96 \text{ x } U_f \end{split}$$

Prepared by: J Ward

Checked by:

y: L Mears

CALCULATION OF NOZZLE SIZE & K FACTOR

Exhaust & sample gas conditions

Desired sampling rate at orifice (SR $_{o}$)	21.2 l/min	0.749	ft ³ /min
Expected meter outlet temperature (T _m)	20 °C		

(guide is a sampling rate of 0.75 ft³/min or 21.2 l/min at the orifice)

Conditions at nozzle		Conditions at orifice/meter	Conditions at orifice/meter	
Sampling rate (SR _n)	22.06 l/min	Sampling rate (SR _o)	21.20 l/min	
Temperature (T _{duct})	29.00 °C	Temperature (T _a)	20.00 °C	
Pressure (P _{duct})	99.32 kPa	Pressure (P _m)	99.40 kPa	
Water vapour (H ₂ O _{duct}	0.85 %	Water vapour (H ₂ O _m)	0 %	
Molecular weight (M _{duct})	28.74	Molecular weight (M _m)	28.83	

Orifice Parameters

Orifice plate coefficient (∆H _@)	2.3847	" w.g.

Determination of nozzle diameter

based on isokinetic sampling and the average gas velocity

 $D_{nr} = 2000 \text{ x} \sqrt{[SR_n/V_{duct} \text{ x} \pi \text{ x} 60000]}$

where D_{nr} is the recommended nozzle diameter (mm)

Recommended nozzle diameter (D _{nr}	=	5.044	mm
Diameter of nozzle selected (D _n)	=	6	mm

Determination of K Factor

based on preliminary exhaust gas conditions

K Factor is a proportionality factor relating the pressure drop measured with the Pitot tube in the duct (h) with the corresponding pressure drop at the orifice (Δ H), i.e.

 $\Delta H = K * h$

 $K = 8.038 \text{ x } 10^{-5} \text{ x } C_p^{-2} \text{ x } \Delta H_{\textcircled{B}} \text{ x } D_n^{-4} \text{ x } (M_m/M_{duct}) \text{ x } [(100-H_2O_{duct})/(100-H_2O_m)]^2. (T_m + 273/T_{duct} + 273).(P_{duct}/P_m) \text{ (I } 100-H_2O_{duct})/(100-H_2O_m)]^2. (T_m + 273/T_{duct} + 273).(P_{duct}/P_m) \text{ (I } 100-H_2O_{duct})/(100-H_2O_m)]^2. (T_m + 273/T_{duct} + 273).(P_{duct}/P_m) \text{ (I } 100-H_2O_{duct})/(100-H_2O_m)]^2. (T_m + 273/T_{duct} + 273).(P_{duct}/P_m) \text{ (I } 100-H_2O_{duct})/(100-H_2O_m)]^2. (T_m + 273/T_{duct} + 273).(P_{duct}/P_m) \text{ (I } 100-H_2O_{duct})/(100-H_2O_m)]^2. (T_m + 273/T_{duct} + 273).(P_{duct}/P_m) \text{ (I } 100-H_2O_{duct})/(100-H_2O_m)]^2. (T_m + 273/T_{duct} + 273).(P_{duct}/P_m) \text{ (I } 100-H_2O_{duct})/(100-H_2O_m)]^2. (T_m + 273/T_{duct} + 273).(P_{duct}/P_m) \text{ (I } 100-H_2O_{duct})/(100-H_2O_m)]^2. (T_m + 273/T_{duct} + 273).(P_{duct}/P_m) \text{ (I } 100-H_2O_{duct})/(100-H_2O_m)]^2. (T_m + 273/T_{duct} + 273).(P_{duct}/P_m) \text{ (I } 100-H_2O_{duct})/(100-H_2O_m)]^2. (T_m + 273/T_{duct} + 273).(P_{duct}/P_m) \text{ (I } 100-H_2O_{duct})/(100-H_2O_m)]^2. (T_m + 273/T_{duct} + 273).(P_{duct}/P_m) \text{ (I } 100-H_2O_{duct})/(100-H_2O_m)]^2. (T_m + 273/T_{duct} + 273/$

where $\Delta H_{@}$ is the orifice plate coefficient (mm w.g.)

K Factor	=	6.0326
K Factor (independent of C₀)	=	6.0326

SCIENTIFICS MONITORING REPORT FORM TOTAL PARTICULATE MATTER to BS EN 13284-1/BS ISO 9096

Company Site

Test carried out by

Sample point

A2TPM

Test Ref

SAMPLING TIMES

Determination	TPM
Date	15-Jun-10
Time Start	1604
Time End	1704
Duration (t) min	60

Sarginsons

A2 - Dry Arrestor

J Ward & L Mears

Coventry

Sampling plane

Dimension traversed by sampling probe (D) m	0.83
Cross sectional area of sampling plane (A) m ²	0.68

Duct gas conditions

Determination		TPM
Ambient temperature (T _{Amb})	°C	22.0
Average duct gas temperature (T _{duct})	°c	32.3
Duct static gas pressure (P _{Static})	kPa	-0.08
Barometric pressure (P _{Baro})	kPa	99.40
Volume flow rate @ ref. conditions (Q _{Ref})	m³/s	11.10
Gas compressibility correction (ε)		0.995
Wet gas density (ρ _a)		1.14
Exhaust gas conditions measurements		A2FL

Reference conditions

Determination		TPM
Actual Duct Flow Conditions		
Average temperature (T _{duct})	°C	32.3
Total pressure (P _{duct})	kPa	99.32
Oxygen (O _{2duct})	% vol,dry	20.80
Water vapour (H ₂ O _{duct})	% vol	0.85
Reference Conditions		
Temperature (T _{Ref})	°C	0
Pressure (P _{Ref})	kPa	101.3
Oxygen (O _{2Ref})	% vol, dry	20.8
Water vapour (H ₂ O _{Ref})	% vol	0.85

Sampling conditions

Determination		ТРМ
Nozzle diameter (d) Ti18 Titanium	mm	6.000
Initial gas meter reading m ³		8.855
Final gas meter reading m ³		10.299
Sampled volume (SV _M) m ³		1.444

Calculation of sample gas volume at reference conditions, SV_{Ref}

SV _{Ref}	=	SV _{Meter} x γ x	[273 + T _{Ref}]/[273 + T _{Meter}]
			P _{Baro} /P _{Ref}
			[100-H ₂ O _{Meter}]/[100-H ₂ O _{Ref}]
			[20.9-O _{2Duct}]/[20.9-O _{2Ref}]

Determination	TPM
Sampled volume @ ref. conditions (SV _{Ref}) m ³	1.325

Prepared by:

J Ward

Checked by:

L Mears

Corrections Temperature Pressure Water vapour Oxygen

Sarginsons Precision Components Coventry

SAMPLING DATA TPM

Initial	a	motor	r

Initial gas r	meter r	eading		8855]I	Start Time	e	1604							
Distance Time of Run time			Run time	Gas	Pitot Orifice ∆H cm w.g. Isokinetic Temperatures					Oxygen					
from	Port	Day		meter	Reading	Desired	Actual	difference	Gas (T _{duct})	Probe	Filter	Mete	Meter (T _N) Impinger		
Duct Wall				reading	(h)	(ΔH _d)	(∆H _a)	$(\Delta H_g / \Delta H_g)$	(T _{duct})	(T _P)	(T _F)	Inlet	Outlet	(T _{imp})	%, v/v, dry
Fraction of D		h:mm	mm	1	cm w.g.	=h x K _i x Cp ²		%	°C	°C	°C	°C	°C	°C	
0.250	Α	1604	0	8855	1.46	6.21	6	97	31	31	31	24	24	n/a	20.8
		1609	5	8950	1.46	6.21	6	97	32	32	32	24	23	n/a	
		1614	10	9111	1.56	6.64	6.6	99	33	33	33	26	24	n/a	20.8
	Α	1619	15	9181	1.5	6.38	6.2	97	32	32	32	26	24	n/a	
		1624	20	9355	1.66	7.07	7	99	32	32	32	28	26	n/a	20.8
		1629	25	9442	1.7	7.24	7	97	32	32	32	28	26	n/a	
0.750	Α	1634	30	9542	1.72	7.32	7.2	98	32	32	32	28	26	n/a	20.8
		1639	35	9677	1.6	6.81	6.6	97	32	32	32	29	26	n/a	
		1644	40	9805	1.64	6.98	6.8	97	32	32	32	29	26	n/a	20.8
	Α	1649	45	9928	1.6	6.81	6.6	97	33	33	33	30	27	n/a	
		1654	50	10055	1.6	6.81	6.6	97	33	33	33	30	27	n/a	20.8
		1659	55	10175	1.54	6.56	6.4	98	33	33	33	30	28	n/a	
		1704	60	10299										l l	
-															
	Average	s							32.3	32.3	32.3	2	6.6	#DIV/0!	20.8

Final gas meter reading

End Time

Equipment used

Item	File No.
Control box	P1268
Meter coefficient (y)	1.017
K factor _i (K _i , independent of C _p)	6.033
Orifice plate pressure units	cm w.g
Pitot differential pressure units	cm w.g
Pitot	S Type
Pitot coefficient (Cp)	0.84
Probe liner thermocouple Titanium	N/A
Duct gas thermocouple	P1287
Oven thermocouple	N/A
Impinger exit thermocouple	N/A
Timer	P1153

Leak check

	Start	End
Start Time	15:58	17:10
End Time	16:00	17:12
Initial meter reading m	³ 8.8352	10.3432
Final meter reading m	³ 8.8357	10.3436
Duration of leak test mit	1 2	2
Pump vacuum "H	g -15	-15
Leak rate Vmi	n 0.25	0.2
Less than 2% of normal sampling rate?	Yes	Yes

10299 I

Glassware

Clean Yes Date 15.06.10 Prepared by LM

SAMPLELOG

Determination Method blank		Field blank	Sample						
Particulate phase									
Filter No.		02672	02667						
Rinsings No.		02672W	02667W						
Vapour phase (if collected)									
First stage	No.								
	Volume (ml)								
	Туре								
Final stage	No.								
	Volume (ml)								
	Туре								

1704

Approach to isokinetic sampling

Average gas velocity (V _{duct})	13.8 m/s
Nozzle diameter (D _n)	6.000 mm
Sampling time (t)	60 min
Theoretical isokinetic sample volume SV _t	1407.12 I
Actual sample volume (SV _a)	1510.92 I
Approach to isokinetic sampling (ΔI)	107.4 %

Test Ref A2TPM

where Vduct is the average duct velocity based on the above measurements Votes to a very go due very very set of the advert measurements in a very set of the set of the very very set of the very se

SV_z = V_{duct} x m x [D₂/2000]² x t x 60 x 1000 Sv_a is the sample volume at duct conditions SV_a = SV_m x y x [(273 + T_{duct})/(273 + T_m)] x (P_{Bmr}/P_{duct}) x (100 - H₂O_m)/(100 - H₂O_{duct})

Determination of exhaust gas flow rate

based on measurements at sample points only

Flow rate at duct conditions (Q _{duct})	9.41 m ³ /s
Flow rate at STP (Q _{STP})	8.26 m ³ /s
Flow rate at reference conditions (Q _{Ref})	8.26 m ³ /s

where

$$\begin{split} & Q_{duct} = V_{duct} \ge A \\ & Q_{STP} = Q_{duct} \ge [(T_{Ref} + 273)/(T_{duct} + 273)] \ge (P_{Baro}/P_{Ref}) \end{split}$$
Q_{Ref} = Q_{STP} x [(20.9-O_{2Ref})/(20.9-O_{2duct})] x [(100-H₂O_{duct})/(100-H₂O_{Ref})]

PARTICULATE WEIGHINGS

Test Ref A2TPM

Filters

Determination		Method	Field	TPM
		Blank	Blank	
Filter No.		0	02672	02667
Pre-sampling conditioning temperature (±5°C)	°C	180	180	180
Post-sampling conditioning temperature (±5°C)	°C	160	160	160
Diameter	mm	110	110	110
Material		Quartz	Quartz	Quartz
Pre-sampling weights				
after 1 min	g		0.0410	0.0414
after 2 min	g		0.0410	0.0414
after 3 min	g		0.0410	0.0414
Weight extrapolated to zero time (M _{fi0})	g		0.0410	0.0414
Post-sampling weights				
after 1 min	g		0.0409	0.0442
after 2 min	g		0.0409	0.0442
after 3 min	g		0.0409	0.0442
Weight extrapolated to zero time (M _{ff0})	g		0.0409	0.0442

Rinsings

Pre-sampling conditioning temperature (±5°C)	°C	180	180	180
Post-sampling conditioning temperature (±5°C)	°C	160	160	160
Pre-sampling weights (container only)				
after 1 min	g		65.8804	68.9995
after 2 min	g		65.8804	68.9994
after 3 min	g		65.8804	68.9994
Weight extrapolated to zero time (M _{ri0})	g		65.8804	68.9995
Post-sampling weights (container and evaporated rins	ings)			
after 1 min	g		65.8813	69.0017
after 2 min	g		65.8812	69.0016
after 3 min	g		65.8811	69.0015
Weight extrapolated to zero time (M _{rf0})	g		65.8814	69.0018

Summary

Determination		Method	Field	TPM
		Blank (M _{mb})	Blank	
Mass collected on filter ($M_{f} = (M_{ff0}, M_{fi0}, M_{fmb})$)	g	0.0000	-0.0001	0.0028
Mass collected in rinsings (M _r = (M _{rf0} -M _{ri0} -M _{rmb)})	g	0.0000	0.0010	0.0023
Total mass collected (M = M _f + M _r)	g	0.0000	0.0009	0.0051

Uncertainty Calculation Parameters

٦

Standard uncertainty for gas volume measurement (U6)	2.9 %
Standard uncertainty for filter weighing (U17)	0.57 mg
Standard uncertainty for washings weighing (U17)	0.50 mg
Limit of detection for filter weighing (U17)	0.50 mg
Limit of detecion for washings weighing (U17)	0.50 mg
Standard uncertainty for oxygen correction (U11)	0.95 %
Standard uncertainty for gas flow measurement (U14)	5.7 %

Emission Limit Value

Emission limit value (ELV) at reference conditions x mg/m ³
--

SUMMARY OF MEASUREMENTS

Test Ref A2TPM

Calculation of Particulate Concentration and Discharge Rate

Particulate concentration (C), $mg/m^3 = M \times 1000/ SV_{Ref}$

Discharge rate, kg/h = C x Q_{Ref} x 0.0036

Determination	Field Blank	ТРМ	
	mg/m ³	0.00	2.02
Particulate concentration at reference conditions	<u> </u>		3.82
Uncertainty	mg/m ³	0.68	3.39
Particulate concentration at duct conditions (raw)	mg/m ³	0.60	3.35
Particulate discharge rate	kg/h	0.03	0.15
Uncertainty	kg/h	0.03	0.15

Note: Field blank results based on average sampling conditions

Uncertainty budget

Uncertainties		Field Blank	TPM
Volume measurement (m _{vol})	mg	0.03	0.15
Filter weighings (m _f)	mg	-0.10	1.66
Rinsings weighings (m _w)	mg	0.94	1.57
Total for uncorrected measurement (U _u)	mg	0.95	2.29
Correction to reference conditions (m _{corr})	mg	0.00	0.00
Total for corrected measurement (U _c)	mg	0.95	2.29
Concentration at 95% confidence interval (U_{95c})	mg/m ³	0.68	3.39

Based on Procedure 55 and Uncertainty Policies 11 & 17 (in accordance with requirements of BS EN ISO 14956:2002 and ENV 13005 (GUM))

COMPLIANCE WITH BS EN 13284-1:2002/BS ISO 9096 CONDITIONS

Flow conditions (BS EN 13284-1, 5.2 & BS ISO 9096, 5.3)

Standard	EN 13284-1
Angle of gas flow less than 15°	Yes
No local negative gas flow	Yes
Minimum differential pressure greater than 5 Pa	Yes
Ratio of highest to lowest local gas velocites less than 3:1	Yes

Compliance with BS EN 13284-1

Nozzle diameter greater than 6 mm (Clause 6.2.4) Average sampling rate was within -5% and +15% of isokinetic conditions (Clause 8.4) Leak rate is within 2% of sample rate (Clause 8.4)

SCIENTIFICS MONITORING REPORT FORM WATER VAPOUR DETERMINATION to BS EN 14790:2005

Company	Sarginsons	Test Ref	A2H20
Site	Coventry	Date	15-Jun-10
Sample point	A2 - Dry Arrestor	Time start	1625
Test carried out by	L Mears & J Ward	Time End	1715
		Duration, t (min)	50

Sampling Rate

Gas meter start reading (SV _{Mi})	Ì	40737.5000
Gas meter end reading (SV _{Mf})	I	40787.0100
Volume passed at meter conditions (SV _M =SV _{Mf} -SV _{Mi}))	m³	0.0495
Sampling rate at meter conditions (SVM/t)	m³/min	0.0010

Sampling Conditions

Time G		leter	Probe/heated line	
	Temperature	Pressure	temperature	
	T _M ,°C	P _M , kPa	°C	
1630	19.0	99.4	n/a	
1715	23.0	99.4	n/a	
			1	
Average	21.0	99.4	#DIV/0!	

Equipment

Gas meter	P496
Gas meter calibration factor	1.0006
Probe/heated line thermocouple	n/a
Barometer	P154
Timer	P733
Balance	P1244

Leak check

		Start	End
Time start		16:23	17:18
Time end		16:24	17:19
Start volume	I	40737.210	40787.010
End volume	I	40737.220	40787.020
Duration	mins	1	1
Leak rate	l/min	0.01	0.01
Leak rate <2% of sample rate?		Yes	Yes

Balance Check Weighings

Balance No.		P1244			
Check weight no.	P1245	P1245 P1245 P1245			
Certified weight	1000.0000	1000.0000	1000.0000		
Reading (g)	1000.0500	1000.0500	1000.0500		
Allowable tolerance (g)	1.0000	1.0000	1.0000		
Acceptable response	Yes	Yes	Yes		

Test Ref. A2H20

Collection of Water from Gas

Collection	Initial	Final	Mass
Stage (ci)	Mass(Mci _i)	Mass (Mci _f)	gain (Mci)
	g	g	g
Container 1	60.150	60.220	0.070
Container 2	55.580	55.820	0.240
Container 3	44.940	44.940	0.000
Container 4			
Container 5			
Container 6			
Total (M)	160.670	160.980	0.310

Mass of water collected (M) = $\Sigma(Mc1_f-Mc1_i)...(Mci_f-Mci_i)$

Calculation of dry gas sample volume at STP (SV_{STP})

SV_{STP} = SV_M x (273/(273 + T_M) x (P_M/101.3)

Volume of dry gas sampled at STP (SV _{STP})	m ³ 0.0451

Calculation of water vapour content (H₂O_{duct})

where	H ₂ O _{duct} = MV _{STP} MW _{H2O}	100 x (M x MV _{STP} /MW _{H20})/[SV _{ST} molecular volume at STP (22.41) molecular weight of water (18 kg	2 m ³ /kgmole)	. /MW н2	o)]	
Water vapour	content (H ₂ O _{duct})	%	0.85	±	0.85	

Method performance

Water collection efficiency (ε=100-(Mci.100/M))	%	100.0
Water content in final container	%	0.0
Correction for collection efficiency (Corr _s)	%	0.0

Compliance with BS 14790

Uncertainty greater than 20% of measured value Clause 7.3) - outside standard Temperature at outlet is less than 4oC based on calculated dew point (Clause 6.4.2) Leak rate is greater than 2% of sample flow rate (Clause 6.3) - outside standard Sampling duration is within minimum of 30 minutes (Clause 6.1) Sample volume is below minimum of 50 I (Clause 6.1) - outside standard Residual water content at outlet is below 1.25% (Clause 5.8) Sampling temperature fell below minimum of 120oC (Clause 5.2) - outside standard

Uncertainty Budget (based on BS 14790 and Uncertainty Policy U25)

Volume of sampled gas	V	0.045 m ³
Average temperature of gas at meter	Т	21 °C
Average barometric pressure at meter	P	994 mb
Sampling line leakage		0.01 m ³ /min
Duration of sampling	t	50 min
Total mass weighed	M	160.98 g

Source of uncertainty			Value		Value of standard uncertainty			Relative standard uncertainty (%)	
Measurement of sample gas volume	u,V _m	2.0 %	uv	u _s ,V _m =	4.V √3	0.0005 m ³	u _r ,V _m	1.15	
Measurement of sample gas temperature	u,T _m	1.0 %	u	u _s ,T _m =	$\frac{u(T+273)}{\sqrt{3}}$	1.6974 K	u _r , T _m	0.58	
Measurement of absolute pressure	u,P _m	1.0 %	up	u _s ,P _m =	<u>uP</u> 3	5.7389 mb	u _r , P _m	0.58	
Leakage in sampling line	u,L	1009.9 %	u	u _s ,L =	$\frac{uV}{\sqrt{3}}$	0.2632 m ³	u _r ,L	583.06	
Measurement of weight - balance uncertainty	u,W _m	0.01 %	u _{wm}	u _s ,W _m =	$\frac{U_{m-M}}{\sqrt{3}}$	0.0093 g		-	
Measurement of weight - balance repeatability	u,Wr	0.011 g	u _{wr}	u _s ,W _r =	Un	0.0110 g		-	
Total measurement of weight	u,W	-	-	- u _s ,W =		0.0203 g	u _r ,W	6.55	

Total standard relative uncertainty $u_r = \sqrt{u_r, V_m^2 + u_r, T_m^2 + u_r, P_m^2 + u_r}$		$u^{2} + u_{r}, P_{m}^{2} + u_{r}, L^{2} + u_{r}, W^{2} + C$	$+ u_r L^2 + u_r W^2 + Corr_{\varepsilon}$		
Total relative uncerta	ainty	<i>U</i> _r = 1.96 <i>u</i> _r			100.00 %
Prepared by:	L Mears		Checked by:	J Ward	

Prepared by:

END OF REPORT

