Report for the Periodic Monitoring of Emissions to Air Part 1: Executive Summary

Permit Number:

Operator: Federal Mogul Sintered Products Ltd

Installation: Main Stack

Monitoring dates: 28th August 2013

Contract Number: P-RED13-113/EB/R1/Rev0

Client Organisation: Federal Mogul Sintered Products Ltd

Address: Holbrook Lane

Coventry CV6 4BG

Monitoring Organisation: Redwing Environmental Ltd

Address: Unit 7, Manor Road Business Park

Manor Road Atherstone Warwickshire CV9 1TE

Date of Report: 24th September 2013

Report Approved By: Elena Berek MCERTS Registration Number: MM 02 029

Level 2 - Technical Endorsements 1, 2, 3 & 4

Function: Director

Signed:

Contents

Part 1: Executive Summary	3
1.0 Monitoring Objectives	4
1.1 Overall aim of the monitoring campaign	4
1.2 Substances to be monitored	
Table 1 - Monitoring Programme	4
1.3 Any Special Requirements	
1.4 Monitoring Results	5
1.5 Monitoring Deviations	5
2.0 Part 2: Supporting Information	6
Appendix 1: Site Team Details	6
Elena Berek – Team Leader	6
MM 02 029 MCerts Level 2 TE1, TE2, TE3 & TE4	6
Monitoring organisation method and Technical Procedure details	
Standard reference number	
Technical Procedure	6
Metals	
Equipment Checklist	6
APPENDIX A	7
Main Stack – Results	7
A1 - Diagram and Dimensions of the Stack	8
A2 - Flow criteria measurements	g
A3 - Gas Homogeneity test results (Not applicable)	g
A4 - Gas Measurements test results	10
A5 - Water Vapour Measurements (Not required as < 5%)	10
A6 - Sampling Measurements (Stack gas temperature & Velocity during	
Particulate and Metals sampling)	10
A7 - Gas Analyser Site Calibration Measurements	12
A8 – Instrumental Gas Analyser Results	12
A9 – Laboratory Results	12
A10 – Calculations	13
A11 – Uncertainty Budgets	
Total Particulate Matter Run 1 – Uncertainty	16
Metals – Uncertainty	
A12 - Method Outline	17
APPENDIX B	19
Main Stack – Stack Height Calculations	10

Part 1: Executive Summary

The following document details the emissions to air monitoring survey undertaken by Elena Berek and Tony Berek of Redwing Environmental Ltd at Federal Mogul Sintered Products Ltd on the 28th August 2013. All results pertain to the dates monitored only.

A summary of results is shown below:-

Analyte Monitored	Exhaust Reference			
	Main Stack			
Total Particulate Matter (mg/m³)	0.14 ± 0.05			
Total Metals (mg/m³)	0.013 ± 0.005			
Efflux Velocity (m/s)	37.0			
Volume Flow Rate(m³/hour)	4,923			

Note 1: Reference conditions are standard temperature and pressure

Note 2: All tests have been sampled under our UKAS scope and analysed by a laboratory UKAS accredited to carry out the analysis

STACK HEIGHT CALCULATION

The original stack height calculation based on the proposed air flow from the installed fan and taking into account the building measured at 10.4m was 12 metres; this was to ensure that the emissions dispersed and were not impeded by the neighbouring building measured at 10.4 metres. However the efflux velocity was calculated to be 6m/s; this velocity would have suffered from aerodynamic downwash and any pollutants present could then flow down the outside of the discharge stack, thereby reducing its effective height.

Federal Mogul expressed concerns about supporting a 12m stack safely next to a 7m building so it was discussed with Coventry City Council about the use of a shorter stack with a much faster efflux velocity so that this would mimic a much taller stack and would not suffer from aerodynamic downwash and this was agreed.

Section 5.4.4 in D1 states that **Discharge stack heights needing a building correction** need only consider buildings within a range of $5U_m$. U_m is calculated to be between 1.2 and 2.8 (1.2 * 5 = 11 and 5 * 2.8 = 14) so it doesn't have to be considered and that would make the tallest building 7m. The Stack Height Calculation recommends a stack height of 7.7m but this is rounded up to 8m.

1.0 Monitoring Objectives

1.1 Overall aim of the monitoring campaign

The exhausts listed below were monitored with respect to Q-RED13-113EBv0 for the compliance check monitoring of emissions to air for Federal Mogul Sintered Products Ltd.

1.2 Substances to be monitored

The substances requested for monitoring at each emission point are listed below:

Table 1 - Monitoring Programme

Substances to be monitored	Emission Point Identification
monitored	Main Stack
*Metals	✓
Velocity	✓
Particulate Matter	\checkmark

^{*}Metals required Cadmium, Manganese, Cobalt, Chromium, Copper, Iron, Molybdenum, Nickel, Vanadium & Tungsten

1.3 Any Special Requirements

None

1.4 Monitoring Results

Emission Point Reference	Substance to be Monitored	Emission Limit Value	Periodic Monitoring Result	Uncertainty expressed at 95% confidence	Units	Reference Conditions 273 K, 101.3 kPa		Start and End Times	Monitoring Method Reference	Accreditation for use of Method	Operating Status
	Total Particulate Matter		mg/m ³	273K,	3K, 28/08/13	1040 - 1440	BS EN 13284-1	MCerts & UKAS			
Main Stack	Total Metals	1.0	0.013	± 0.005	mg/m ³	101.3kPa		1040 - 1440	BS EN 14385	accredited	

1.5 Monitoring Deviations

Emission Point Reference	Were any required substances not monitored (Substance deviation)	Were any substances monitored but didn't follow specified method (Monitoring Deviations)	Other Relevant Issues
Main Stack		BS EN 13284-1 states that a nozzle < 6mm diameter shouldn't be used but due to the fast flow rate a 5mm nozzle was used to ensure that the Zambelli pump could be used around the 25 litres per minute as specified by the manufacturer	concentration was less than 30% of the

2.0 Part 2: Supporting Information

Appendix 1: Site Team Details

Elena Berek – Team Leader

MM 02 029 MCerts Level 2 TE1, TE2, TE3 & TE4

Tony Berek - Env Technician

MM 06 702 MCerts Level 1 (Recertification required)

Monitoring organisation method and Technical Procedure details

Substances Monitored	Standard reference number	Technical Procedure		
Total Particulate Matter	BS EN 13284-1	TP-RED04-04		
Metals	BS EN 14835	TP-RED09-112		

Equipment Checklist

Equipment used									
Pollutant Apparatus Model									
	Zambelli 6000 +	RED 0258							
	Pitot	RED 0237							
Total Particulate	Thermometer	RED 0351, 0352							
Matter	Tape Measure	RED 0123							
	Manometer	RED 0404							
	Thermocouple	RED 0344, 0357, 0395, 0339							
	Barometer	RED 0243							
Metals	Zambelli + Impingement	RED 0258							

APPENDIX A Main Stack – Results

A1 - Diagram and Dimensions of the Stack Main Stack A - 0.35mB - 0.07mD = A - B = 0.28mΑ SAMPLE **PLANE** DS = >5 DDUS US = >5 DDD **SKETCH OF SAMPLING POINT** S = No of Hydraulic DD downstream from sample plane US = No of Hydraulic DD upstream of sample plane

A2 - Flow criteria measurements

Client	Federal Mogul								
Site Address	Coventry								
Job Number	P-RED13-113								
Date	28th August 2013								
Operator(s)	T Berek & E Berek								
Operator(s)	1 Belek & E Belek								
					Isokinetic Sar	nple Positions (%)	Sam.	pling Plane Diagra	m
Stack Re	£		Main Otali		multiply by diame	eter to obtain sample	Sall	pling Flane Diagra	III .
Stack Re	rerence		Main Stack			ooints			
					1	50.00			
lumber of Stacks				1	2	N/A	/		Sample Line B
tack Configuration	n			ound	3	N/A			Line B
Dimensions (mtrs)			0	.28	4	N/A	(Ĭ	
	applicable) (metres))			5	N/A	\		
lumber of Sample				2	6	N/A		Sample Line A	
lumber of Samples	-			1	7	N/A		Line A	
lozzle Diameter (m	ım)			5.0	8	N/A			
Nozzle Area (m²)				001963	Averag	e Isokinetic Flow Rate	(Itrs/min)	Axis 1	Axis 2
Stack Area (m²)				062				26.15	N/A
Pitot Coefficient	0.84	Pitot C	alibration Due l	Date		15th March 2014		Atmos. Pre	ssure (kPa)
Position	Distance	Axis 1	Temperature	Swirl Test	Axis 2	Temperature	Swirl Test	10	2.5
No.	(cms)	(pa)	(C)	(°)	(pa)	(C)	(°)	Static Pre	ssure (pa)
1	14.00	400	37.4	6.0				5	.0
2	N/A							1 Axis	2 Axis
3	N/A							Velocity of	flow (m/s)
4	N/A							22.21	N/A
5	N/A							Volume Flov	/ Rate (m³/s)
6	N/A							1.37	N/A
7	N/A								
8	N/A							Reduc	ed Exit
verages		400	37.4					N.	Ά
lean Flue Gas Ten	np (in K) Tp = ((Mea	n T1 + Mean T2)/2)+	+273)) =				310.4	.0	
	f gas temperature re			p-273) =		21.88	to	-	52.92
lighest Velocity Re		=	,, (,			22.8		
owest Velocity Re		=					22.1		
	est (Max permitted =							1.03	:1
	μ								
				On si	te Checklist				
nitial Leak Check	<0.2	End of first run	<0.2		Start of 2 nd run	N/A	End of 2 nd run	N	'A
Acceptable Leak	Check < 2% Vol					Manometer Leak Chec	ek	0	К
(I/m		0.52				Pitot Leak Check			
Range of G	as Temps	ОК						Run 1	Run 2
	num Velocity require		YES		Overall Isok	inetic Ratio (%) (must l	oe 95 to 115%)	98.1	N/A
	low Present, YES o		NO		Are there sufficie	ent rails and kick board	1? (YES . NO or N/A)		NO
	ea greater than 5m²?		N/A			ront of the sample line			
	_		YES		15 and area IIIII	(YES or		· · · · · · · · · · ·	YES
rasseu m	ighest to lowest Vel	oonly (0.1)	123	211					
				Site Eq	uipment Used				
Pitot Re	ference	RED 02	237			Manometer Reference	е	RED	0404
Thermometer Reference RED 0351/03		/0352			Thermocouple Reference		RED	0344	
Balance R	Reference	N/A				Sampling Pump Referen	nce	e RED 0258	
Tape Measur	e Reference	RED 0°	121			Barometer Reference	•	RED 0403	
DGM Ther	rmocouple	RED 02	274		lmį	oinger Outlet Thermoc	ouple	RED 0338	
Cali	pers	RED 0	300			Condenser Thermocou	ple	N/A	
	-								

A3 - Gas Homogeneity test results (Not applicable)

A4 - Gas Measurements test results

Molecular weight of dry gas stream, M _d							
CO ₂	0.3	%					
O ₂	19.7	%					
Total	20	%					
N ₂ (100 - total)	80	%					
$M_d = 0.44(\%CO2)+0.32(\%O2)+0.28(\%N2)$	28.836	g/gmol					

A5 - Water Vapour Measurements (Not required as < 5%)

A6 - Sampling Measurements (Stack gas temperature & Velocity during Particulate and Metals sampling)

RUN No							One					
Filter ID							G47/280813-01					
Sample Point	Probe Distance (cm)	Time	Pressure reading (Pa)	Sampling Rate (Litres/min)	Dry Gas Meter Reading (Litres)	Stack Gas Temperature (oC)	Dry Gas Meter Temperature (oC)	Ambient Temperature (oC)	Probe Temp (oC)	Oven Temp (oC)	Last Impinger Temp (oC)	Condensate Trap Temp (oC)
A1	14.0	10:40	388	25.7	919417	37.4	21.6	18.8	70	70	19.8	N/A
		10:50	335	23.9	919666	39.1	22.6	21.1	70	70	20.1	N/A
		11:00	390	25.7	919903	40.3	24.3	22.1	70	70	20.4	N/A
		11:10	448	27.6	920175	42.1	24.9	22.6	70	70	21.2	N/A
		11:20	413	26.5	920501	43.6	26.2	24.4	70	70	21.9	N/A
		11:30	377	25.3	920763	44.1	27	24.3	70	70	22	N/A
		11:40	400	26.1	920999	44.9	27.4	24.3	70	70	22.3	N/A
		11:50	453	27.8	921245	45.8	27.8	24.8	70	70	22.5	N/A
		12:00	408	26.3	921489	47	28.2	2 5	70	70	23.1	N/A
		12:10	379	25.4	921732	44.3	28.8	25.1	70	70	20.9	N/A
		12:20	444	27.5	922045	42.9	29.2	25.1	70	70	19.4	N/A
		12:30	421	26.8	922289	42.1	30.1	25.1	70	70	18.1	N/A
		12:40	408	26.3	922560	41	30.8	25.2	70	70	18	N/A
		12:50	412	26.5	922823	40.9	30.3	25.3	70	70	17.7	N/A
		13:00	421	26.8	923088	40.7	30.1	25.3	70	70	17.4	N/A
		13:10	439	27.3	923350	39.3	29.8	25.3	70	70	17.3	N/A
		13:20	427	26.9	923611	39.1	29.2	25.3	70	70	17.2	N/A
		13:30	440	27.3	923883	39.8	30.1	25.4	70	70	17.1	N/A
		13:40	389	25.7	924156	39.9	30.2	25.4	70	70	17.1	N/A
		13:50	409	26.4	924414	40	29.9	25.6	70	70	18	N/A
		14:00	379	25.4	924677	40.6	30.1	25.7	70	70	18.2	N/A
		14:10	431	27.1	924931	41.6	30.2	25.8	70	70	18.3	N/A
		14:20	420	26.7	925202	47.5	31	25.9	70	70	18.5	N/A
		14:30	410	26.4	925423	48	31.8	26	70	70	18.6	N/A
		14:40			925650							
Finish												
Actual Sampling Time		240.00		26.49	6233.0	42.17	28.40	24.54	70.00	70.00	19.38	N/A

Stack Reference ID Main Stack						
	Federal Mogul					
			RUN 1			
Filter Reference No			G47/280813-0	1		
Date		28	8th August 20	13		
Sample Period	10:40		to			14:40
Velocity (m/s)			22.21			
Volume flow rate of Stack gas (m³/hr)			4923			
Average Stack Temp (°C)			37.4			
Temp Range ± 5% (°C)	21.88		to			52.92
Lowest Velocity Reading (m/s)		·	22.15			
Highest Velocity Reading (m/s)			22.84			
Ratio (less than 3:1)	1.03		:			1
Pre-conditioning temperature of Filter (°C)			180			
Instack sampling - Max Filter temperature (°C)			42.2			
Post-conditioning temperature Filter/Wash (°C)			160			
Oxygen %			19.7			
Carbon Dioxide %			0.30			
Moisture (%)			2.34			
Litres sampled			6233			
Corrected volume sampled - STP (m³)			5.713			
Blank Filter Run weight gain (mg)	0.0	10	Blank Concentra			0.002
Blank Wash Run weight gain (mg)	0.0	80	(mg/m ³			0.014
Weighing uncertainty of balance (mg)	0.074	This must b	e <5% of ELV	ELV=	20	1.0
Overall Blank value (mg/m³)	0.016	This must be	e <10% of ELV	ELV=	20	2.0
Particulate weight collected on filter (mg)			0.29			
Particulate weight collected in Wash (mg)			0.54			
Total Particulate weight collected (mg)	0.83					
Total Particulate Concentration, dry gas at STP (mg/m³)	0.15					
Total Particulate Concentration, wet gas at STP (mg/m³)	0.14					
Total Particulate Concentration corrected for 11% Oxygen, dry gas (mg/m³)			N/A			
Total Particulate Mass Emission (Kg/hour)			0.0007			

Metals	Amount Collected (ug)	Total Concentration (mg/m3)	Blank Regeant Concentration (mg/m3)	Blank Rinse Concentration (mg/m3)
Cadmium	0.68	0.00012	0.000	0.000
Manganese	16.60	0.00292	0.000	0.000
Cobalt	2.60	0.00046	0.000	0.000
Chromium	8.10	0.00143	0.000	0.000
Copper	3.68	0.00065	0.000	0.000
Iron	0.00	0.00000	0.000	0.000
Molybdenum	14.00	0.00246	0.000	0.000
Nickel	0.00	0.00000	0.000	0.000
Vanadium	9.29	0.00164	0.000	0.000
Tungsten	10.00	0.00176	0.000	0.000
Silicon	8.00	0.00141	0.000	0.000
Total Metals (mg/m ³)		0.01	284	

A7 - Gas Analyser Site Calibration MeasurementsNot applicable

A8 – Instrumental Gas Analyser Results Not applicable

A9 – Laboratory Results Not applicable

A10 - Calculations

	Cal	culations	for Meta	als				Run 1	Units
ample Gas V	olume, dry	V _{mstd}							
\/ (\/2 -	V1*T	* D							
v mstd = (vz =	$V_{\text{mstd}} = (V2 - V1) * \underline{T_{\text{std}}} * \underline{P_{\text{m}}}$ $T_{\text{m}} \qquad P_{\text{std}}$					V _{mstd} =	5.713	m ³	
	I _m	P_{std}					P _m =	102.5	kPa
\/-l f			- 1/ 0/0	1/41			T _m =	301.4	°K
Volume of gas s Average dry gas				– V1)			V2 =	925.650	m ³
Measured Atmo							V1 =	919.417	m ³
Tstd - 273K									
Pstd – 101.3kP	a								
					1				
letals Conce	ntration Ca	alculations	s, Absorp	tion effic	iency				
						Metals	(Solid)	66.6	ug
						Metals (Gases) in		0.0262	ug/ml
						Metals (Gases)		0.011	ug/ml
$\mathbf{g}_{El} = \frac{M_{Elsol}}{m}$	$+M\!E$ 1g as					Metals (Gases)	in Probe Rinse	0.000	ug/ml
J EI =	$\overline{V_o}$					Impingers 1 + 2	Volume (v ₁) =	200	ml
						Impinger 3 V	olume (v ₂) =	98	ml
B _{EI} =	Mass con	centration o	f Specific E	lement		Probe Rinse \	/olume (v ₃) =	78	ml
	or total m	etals (mg/m	3)						
M _{Elsol} =	Mass of S	Specific Elen	nent (Solid))		Metals (G	iases) =	6.35	ug
M _{Elgas} =	Sum of Sp	pecific Elem	ents from r	inses and i	mpingers (Gas	ses)			
						BEI	=	0.013	mg/m ³
						Is Concentration	>30% of FLV	0.1	%
						ELV (1.00	mg/m ³
bsorption Efficie	ncy (AE) =	Impingers	1 + 2 Conc	entration	* 100				
		Imp (1 + 2) + Imp 3 C	oncentratio	n	AE (9		82.6	%
						AE should be >90	% for a pass this i less than 30% o		concentration

ISOKINETIC EQUATIONS Page 1			Units
Absolute pressure of stock and De			
Absolute pressure of stack gas, Ps	102) E	kPa
Barometric pressure, Pb			
Stack static pressure, P _{static}	5.	-	Pa
$P_s = P_b + (P_{static}/1000)$	102.	505	kPa
Moisture			
$V_{mstd} = (V2 - V1) * T_{std} * P_{m}$	V _{mstd} =	0.0572	m ³
	P _m =	102.5	kPa
T_{m} P_{std}	T _m =	289.6	°K
	V2 =	0.0600	m ³
Volume of gas sample through gas meter, Vm (V2 – V1) Average dry gas meter temperature, Tm Measured Atmospheric pressure Pm Tstd – 273K Pstd – 101.3kPa	V1 =	0.0000	m ³
$V_{wc}(g/m3) = \underline{m}_{wc} \text{in } g/m^3$ V_{mstd} Where V_{wc} = water vapour content in grams per cubic meter in standardised conditions of temperature and pressure and on dry basis m_{wc} = weight gain in grams	V _{wc} = m _{wc} = V _{mstd} =	19.2 1.1 0.0572	g/m³ g m³
$V_{wc}(\%) = \underbrace{\frac{m_{wc} * V_{mol(std)}}{Mw}}_{\text{Mw}} * 100$ $\underbrace{\frac{m_{wc} * V_{mol(std)}}{Mw}}_{\text{Mw}} Where \ Vwc = \text{The water vapour content in } \% \ \text{volume on wet basis}$ $Mw = \text{the molecular weight of water } (18g/mol)$	$V_{wc} = $ $m_{wc} = $ $V_{mol(std)} = $ $Mw = $ $V_{mstd} = $	2.3 1.1 0.0224 18 0.0572	% g m³ g/mol m³
Vmol = is the molar volume at standard conditions, in m³/mol at Pstd and Tstd (0.0224)			
Molecular weight of dry gas stream, M _d			
CO ₂	0.		%
)2	19	.7	%
otal	2	0	%
I ₂ (100 - total)	8	0	%
$\Lambda_d = 0.44(\%CO2) + 0.32(\%O2) + 0.28(\%N2)$	28.8	336	g/gmol

ISOKINETIC EQUATIONS Page 2		Run 1	Units
Velocity of stack gas to ISO 10780			
$V = K \times C \times \sqrt{(T_s * \Delta P)/(P_s * M_s)}$	V _{wet} =	22.21	m/s
V = K X C X V(I _s ΔF)/(F _s W _s)		1.37	m/s
ΔP - is the mean pitot pressure difference (kPa)	V _{dry} = K =	0.84	III/S
T _s - is the mean flue gas temperature (°K)	C =	129	
P _s – is the absolute gas pressure (kPa)	T _s =	310.40	°K
M _s – molar mass of gas 29g/gmol	ΔP =	0.4	kPa
K – pitot tube coefficient	P _s =	102.505	kPa
C – 129(m/s).[kg/(kmol.K)] ½	M _s =	28.836	
Actual Flow of stack gas, Q _a			
Q _a = A * V * 3600 Where A = Area of Stack & V = Velocity	A =	0.06	m ²
-	V =	22.21	m/s
	Q _a =	4923	m³/hour
Sample Gas Volume, dry V _{mstd}			
$V_{mstd} = (V2 - V1) * T_{std} * P_{m}$			
T_{m} P_{std}	V _{mstd} =	5.713	m ³
'm 'std	P _m =	102.5	kPa
Volume of gas sample through gas meter, Vm (V2 – V1)	T _m =	28.4	°K
Average dry gas meter temperature, Tm	V2 =	925.65	m ³
Measured Atmospheric pressure Pm	V1 =	919.42	m ³
Tstd – 273K			
Pstd – 101.3kPa			
Isokinetic Sample Rate (litres/minute)			
	Nozzle	5.0	mm
Isokinetic Rate (I/min) = V * A _n * 60 * 1000	diameter V =	1.37	mla
		0.000019625	m/s m ²
Isokinetic Ratio (%) = Actual flow rate (I/min) * 100	A _n =	0.000013025	
Required flow rate (I/min)	rate =	26.15	I/min
V = Velocity (m/s) An = Nozzle area m ²	Actual &	6233	litres
All = Nozzie alea III	required	0233	iities
	sampled volume	6357	litres
Acceptable Isokinetic range 95 to 115%	IR (%) =	98.1	%
Particulate Concentration, C			
C _{dry} = Total mass of particulate collected (M _n) / V _{mstd}	Mr	0.29	mg
M _f = mass collected on filter	Mp	0.54	mg
M _p = mass collected in probe rinse	M _n	0.83	mg
$M_n = Total mass (M_f + M_p)$	C _{dry} =	0.05	mg/m ³
ivin rotal mass (ivin 1 ivip)	Odry -	0.13	
C _{wet} = (C _{dry} * (100 - %Moisture)) / 100	C _{wet} =	0.14	mg/m ³
,	- wet	5	5
Particulate Mass Emission, E			
$E = (C_{wet} * Q_a) / 1000$	E=	0.0007	Kg/hour

A11 – Uncertainty Budgets

Total Particulate Matter Run 1 – Uncertainty

MEASUREMENT UNCERTAINTY BUDGET - TOTAL PARTICULATE MATTER

	Value	Units
Limit value (ELV)	20	mg.m ⁻³
Measured concentration	0.15	mg.m ⁻³ (at ref conditions)
Reference Oxygen	21	% by Volume

Measured Quantities	Symbol	Value	Units
Sampled Volume	V _m	6.23	m³
Gas Meter Temperature	T _m	301.40	К
Sampled Gas Pressure	ρ_{m}	102.5	kPa
Sampled Gas Humidity	H _m	0	% by volume
Oxygen content	$O_{2,m}$	19.7	% by volume
Mass of Particulate	m	0.83	mg
Leak	L	0.2	%
Uncollected Mass (Instack filter - no rinse)	UCM	0.01	mg

Standard Uncertainty	Symbol	Value	Units	Uncertainty as a %	Uncertainty Required	Uncertainty Met
Sampled Volume	uV _m	0.01	m³	0.16	? 2%	Yes
Sampled Gas Temperature	uTm	2	К	0.66	? 1%	Yes
Sampled Gas Pressure	uρ _m	0.005	kPa	0.00	? 1%	Yes
Sampled Gas Humidity	uH _m	1	% by volume	1.00	? 1%	Yes
Oxygen content	$uO_{2,m}$	0.2	% by volume	1.02	? 5%	Yes
Mass of Particulate	um	0.07	mg	8.95	<5% of limit value	No
Leak	L	n/a	n/a	0.20	? 2%	Yes
Uncollected Mass (Instack filter - no rinse)	UCM	n/a	n/a	1.20	? 10% of ELV	Yes

Parameter		Value	Units	Sensitivity Coeff	Uncertainty Contribution	Units	Uncertainty as %
Corrected Volume (STP)	V	5.713	m^3	0.03	0.00	mg.m ⁻³	1.21
Mass of Particulate	m	0.83	mg	0.18	0.01	mg.m ⁻³	8.95
Factor for O2 Correction	fc	1.00		0.15	0.02	mg.m ⁻³	15.38
Leak	L	0.00	mg.m ⁻³	1.00	0.00	mg.m ⁻³	0.12
Uncollected mass	UCM	0.01	mg	0.18	0.00	mg.m ⁻³	0.70
Combined measurement unce	rtainty			1.04	0.03	mg.m ⁻³	

Expanded uncertainty as percentage of measured value	35.71
Expanded uncertainty in units of measurement (mg/m³)	0.05
Expanded uncertainty as percentage of limit value	0.26

expressed with a level of confidence of 95% (Using a coverage factor k=2)

mg.m⁻

mg.m⁻³ (at reference conditions)

Limit value (ELV)

% by volume

Metals – Uncertainty

Reference oxygen

Uncertainty calculation for Determination of mass concentration of Metals, Reference method

Measured Quantities	Symbol	Value	Standard i	uncertainty	Units	Uncertainty as percentage
Sampled Volume Gas	V _m	5.71	uV _m	0.001	m-	0.02
Sampled gas Temperature	T _m	301.4	uTm	2	k	2.00
Sampled gas Pressure	ρ_{m}	102.5	uρ _m	1	kPa	0.98
Sampled gas Humidity	H _m	0	uH _m	1	% by volume	1.00
Oxygen content	O _{2,m}	19.50	$uO_{2,m}$	0.1	% by volume	0.51
Metals Found on Filters	С	0.07	uC	0.010656	mg	
Metals found in Solution	С	0.006	uC	0.001015584	mg	16.00
Impinger 1 & 2 solution volume	VS	0.200	uVS	0.001	I	0.50
Impinger 3 solution volume	VS	0.098	uVS	0.001	I	1.02
Probe Rinse volume	VS	0.078	uVS	0.001	I	1.28
Total Mass of metals	m	0.073	um	0.01	mg	16.09
Note - Sampled gas humidity, temp	erature and pr	essure are values at the gas meter				
eak		0			%	0.00

Parameter		Value	Units	Sensitivity coeff	Uncertainty of	ontribution	Uncertainty as %
Corrected Volume (standard condition	V	5.24	m ³	0.00	0.00	mg.m ⁻³	1.55
Mass	m	0.073	mg	0.19	0.00	mg.m ⁻³	16.09
Factor for O2 Correction	fc	1.00		0.01	0.00	mg.m ⁻³	6.67
Leak	L	0.00	mg.m ⁻³	1.00	0.00	mg.m ⁻³	0.00
Combined uncertainty		_			0.00	mg.m ⁻³	

Expanded uncertainty as percentage of measured value

Expanded uncertainty in units of measurement

Expanded uncertainty as percentgge of limit value

34.97	% measured of value
0.005	mg.m ⁻³
0.49	% FLV

expressed with a level of confidence of 95% using a coverage factor k = 2

A12 - Method Outline

Leak tests for extractive techniques

All extractive-sampling techniques were tested for leaks before sampling proceeded. Any leaks present were eliminated prior to sampling and will be reported.

Leak checks are carried out during the calibrating procedure, as the concentration of the calibration gas is known it is easily noticed if air is entering the sample line and diluting the gas.

Particulate matter BS EN 13284-1: 2002

Total particulate matter was sampled using a Zambelli isokinetic sampling system in accordance with BS EN 13284-1: 2002 – Determination of Low Range Mass Concentration of dust (< 50mg/m³).

The Zambelli sampling system monitors temperature, static pressure and velocities within the duct using an S-type pitot tube and K-type thermocouple. The sampling rate is continuously monitored and adjusted relative to the duct velocity to ensure isokinetic-sampling conditions are maintained throughout the monitoring period.

Exhaust gases were drawn under isokinetic conditions from the exhaust points using the Zambelli sampling probe, particulate matter was then collected on a pre-weighed quartz filter (or most suitable filter for process) contained within the filter cassette holder, and the total particulate matter determined gravimetrically.

It is also necessary to wash the probe and nozzle out with water and then acetone between sampling and the weight of the probe washing added to that collected on the sample filter. Analysis of an acetone/water blank will be carried out and the result corrected accordingly. The sample positions were calculated with respect to BS EN 13284-1: 2002 – Stationary source emissions – Determination of Low Range Mass Concentration of dust.

Sampling may be carried out internally or externally, the method used was in stack sampling and there were no deviations from the method therefore the uncertainty for the monitoring procedure is reported to be within the requirements specified by the Hazardous Waste Directive (HWD) as stated in the Environment Agency Technical Document M2

Uncertainty: ± 30%

BS EN 14385:2004 – Determination of the total emission of As, Cd, Cr, Co, Cu, Mn, Ni, Pb, Sb, Tl and V

A known volume of flue gas will be extracted isokinetically and representatively from a duct or chimney during a certain period of time at a controlled flow rate following BS EN 13284-1:2001

The dust in the sampled gas volume will be collected onto a filter. Thereafter, the gas stream will be passed through a series of absorbers containing absorption solutions and the filter passing fractions of the specific elements are collected within these solutions.

The sample probe and all relevant parts of the sampling train will be heated so that the temperature will be 20°C above the exhaust gas.

Three impingers (absorbers) with approximately 25% of the absorber solution (peroxide & nitric acid) will be positioned after the sample probe. An empty impinger will be added after the last filled impinger as a protection for the downstream sample pump.

The solution from each impinger will be analysed independently, the element mass concentration in the third impinger will be less than 10% of the total concentration in the sampled gas.

Quality Assurance

Redwing Environmental Ltd is accredited to ISO 9001:2008, ISO 14001:2004 and ISO 17025:2005.

Disclaimer

Redwing Environmental Ltd confirms that in preparing this report all reasonable skill and care has been exercised. Unless specifically assigned or transferred within the terms of the agreement, Redwing Environmental Ltd asserts and retains all copyright, and other Intellectual Property Rights, in and over the report and its contents.

APPENDIX B Main Stack – Stack Height Calculations

	Federal Mogul	
	Proposed Stack	
Calculation Method- HMIP Guidance No	ote D1 "Guidelines on Discharge Stack Heig	hts for Polluting Emissions"
	Pollutants	
Pollutant	(mg/Nm³)	g/s
Particulate Matter	20	0.031113553
	Non- Pollutant Parameters	
Actual Stack Gas Flow Rate (m ³ /s)	1.56	
Normalised Flow Rate (Nm ³ /s)	1.37	
Temperature (oC)	37	
Actual Velocity (m/s)	37.00	
Building Height	7	<u></u>
	Guideline Concentrations	
Pollutant	OES/MEL (mg/m³)	Guideline Concentrations (mg/m³)
Particulate Matter	N/A	0.3
lata (1) Cuidalina concentration for not	iculate matter from Table 1 of HMIP Guidan	an Note D1
Note (1) Guideline concentration for part	iculate matter from Table 1 of HiviP Guidan	Ce Note D1
	Background Concentrations	
	Dackground Concentrations	
Pollutant	Background Concentrations (mg/m³)	
Particulate Matter	0.1	
In the D1 Decument these are verice	s Background Concentrations for suspende	d Dortiouloto Mottor. For the gree where
Federal Mogul is located we have desig of limited size with parkland or largely	nated it as a Highly developed large Urban Rural surroundings, b - Highly developed la	area. The other choices are (a - Urban arearge urban area, c - Partially developed, d -
•	luality for the Coventry area was researched so the Background concentration was set to	_

		Federal Mo	gul		
	Pollution Ir	ndex Calculation	s Propo	sed Stack	
Particulate	Matter				
Td		W		V	
Stack Gas		Stack Gas		Stack Gas	
Temp. (K) =	310	Velocity(m/s) =	37.00	Volume (m3/s) =	1.56
Pollution I	ndex	Pi = (D/(Gd-Bc))*1000		
D		Gd		Вс	
Pollutant		Guideline		Background	
Discharge		Conc.		Conc.	
	0.031113553	mg m-3 =	0.3	mg m-3 =	0.1
Pi =	156	m3 s-1		Log10 Pi =	2.19192

		Federal Mogul			
	Uncorrected	Stack Height Calculatio	ns Proposed	Stack	
Uncorrected Stack I	leight Based o	n Plume Bouyancy (Ub			
oncorrected Stack I	loight basea o	ir rume bodyancy (ob			
Heat Release(Q) = (V	(1-(283/Td)))/2.9	(MW)			
	-V	Where V=Actual Discharg	e Volume Rate	e (m ³ /s) =	1.37
	Td=Temperature of Discharged Gases in oK =			Gases in oK =	310
Q(MW) =	0.041		Log10 Q =	-1.38567536	
Jb = 10^a * Pi^b					
	-0.8467	b=	0.4831		
	0.0101	_			
Min Ub(m	n)=1.95*Q^0.19=	1.06	Ub(m) calc =	2.8	
			Ub(m) =	2.8	
	1 1 1 A B	DI II (II	,		
Uncorrected Stack I	leight Based o	n Plume Momentum (U	m)		
Momentum = (283/Td)*V*w				
(200.14	,	-Where V=Actual Disch	arge Volume I	Rate (m3/s) =	1.37
	Td=Temperature of Discharged Gases in oK =			310	
		w=Discharge V	elocity in m/s	ec =	37.00
	10.07500150		4.005047000		
Momentum =	46.27506452	Log10 M =	1.665347033		
Log10Um =	X + (y.log10 Pi	+ 7)0 5			
Log Toom	x - (y.log1011	2,0.5			
x =	-2.117461542		There	fore Log10 Um =	0.076493
	4.860823451			Um(m) =	1.192594
z =	-8.160301428				
Min Hard	m)_0 02##A0 22	. 7 0	llm/m) sala	1 10	
Min Um(m)=0.82M^0.32= 2.8			Um(m) calc= Um(m)=		
			Om(m)=	2.0	

	Federa	l Mogul			
Corrected	Stack Heig	ght Propos	ed Stack		
Uncorrected Stack He	eight is Les	ser of Um a	and Ub=	1.2	m
Building Height is		7	m		
Corrected Stack Heig	ht C=	7.72	m		
Round Up to	Nearest m	8	m		

