

2015 Updating and Screening Assessment for Coventry City Council

In fulfillment of Part IV of the Environment Act 1995 Local Air Quality Management

April 2015

Local Authority	Frances Taylor
Officer	Steve Dewar
Department	Environmental Protection
Address	Room 314, Broadgate House
Telephone	0500 834 333
e-mail	env.protection@coventry.gov.uk
Report Reference	USA2015
number	
Date	April 2015

Executive Summary

Coventry City Council has carried out this Updating and Screening assessment in fulfilment of their local air quality management obligations under Part IV of the Environment Act 1995. This report reviews the results of air quality monitoring carried out within Coventry City Council's area.

Coventry declared a city-wide AQMA in late 2009, and as a consequence of that there are no exceedences of the air quality standards outside of an AQMA. There are several areas that exceed the air quality standards across the city, though there are no new areas of exceedence that have not been identified in previous reports. There therefore is no need for a Detailed Assessment.

There are significant developments happening across the city which are either directly or indirectly affecting air quality, mainly through changes to traffic flows. Monitoring locations are being regularly reviewed and tubes relocated as necessary.

Table of contents

1	Intro	duction	6
	1.1	Description of Local Authority Area	6
	1.2	Purpose of Report	6
	1.3	Air Quality Objectives	7
	1.4	Summary of Previous Review and Assessments	8
2	New	Monitoring Data	15
	2.1	Summary of Monitoring Undertaken	15
	2.1.1	Automatic Monitoring Sites	15
	2.1.2	Non-Automatic Monitoring Sites	22
	2.2	Comparison of Monitoring Results with Air Quality Objectives	28
	2.2.1	Nitrogen Dioxide	28
	2.2.2	PM ₁₀	45
	2.2.3	Sulphur Dioxide	47
	2.2.4	Benzene	47
	2.2.5	Summary of Compliance with AQS Objectives	47
3	Road	d Traffic Sources	48
	3.1	Narrow Congested Streets with Residential Properties Close to the Kerb	49
	3.2	Busy Streets Where People May Spend 1-hour or More Close to Traffic	49
	3.3	Roads with a High Flow of Buses and/or HGVs	49
	3.4	Junctions	49
	3.5	New Roads Constructed or Proposed Since the Last Round of Review and	
	Asses	ssment	50
	3.6	Roads with Significantly Changed Traffic Flows	50
	3.7	Bus and Coach Stations	50
4	Othe	er Transport Sources	51
	4.1	Airports	51
	4.2	Railways (Diesel and Steam Trains)	51
	4.2.1	Stationary Trains	51
	4.2.2	Moving Trains	51
	4.3	Ports (Shipping)	51
5	Indu	strial Sources	52
	5.1	Industrial Installations	52
	5.1.1	New or Proposed Installations for which an Air Quality Assessment has been	
	Carried	Out	52
	5.1.2	Existing Installations where Emissions have Increased Substantially or New	
	Relevan	t Exposure has been Introduced	52
	5.1.3	New or Significantly Changed Installations with No Previous Air Quality	
	Assessn	nent	52

	5.2	Major Fuel (Petrol) Storage Depots	. 53
	5.3	Petrol Stations	. 53
	5.4	Poultry Farms	. 53
6	Com	mercial and Domestic Sources	54
	6.1	Biomass Combustion – Individual Installations	. 54
	6.2	Biomass Combustion – Combined Impacts	. 54
	6.3	Domestic Solid-Fuel Burning	. 54
7	Fugit	ive or Uncontrolled Sources	55
8	Conc	lusions and Proposed Actions	56
	8.1	Conclusions from New Monitoring Data	. 56
	8.2	Conclusions from Assessment of Sources	. 56
	8.3	Proposed Actions	. 57
9	Refe	ences	58

Appendices

Appendix A	QA/QC Data
Appendix B	Monthly NO2 Diffusion Tube Results 2014

1 Introduction

1.1 Description of Local Authority Area

Coventry City Council is a unitary metropolitan authority situated in the West Midlands. The city covers 98.34 square kilometres and has a population of approximately 329,800 residents. The city of Coventry is situated 95 miles northwest of London and 19 miles east of Birmingham. Coventry is near the M6, M69, M45 and M42, and is served by the A45 and A46 dual carriageways.

Typical sources of air pollution include emissions from the commercial and domestic sector, road traffic and industrial processes. Coventry is classed as a smoke control area making it an offence to emit smoke from a chimney caused by the use of an unauthorised appliance, or the burning of unauthorised fuel.

Coventry City Council regulates 85 industrial processes under the Environmental Permitting regime, including petrol filling stations and dry cleaners. In addition to this, the Environment Agency regulates 12 Part A1 installations within the city.

Previous reports within earlier rounds of Coventry City Council's review and assessment programme confirmed that emissions from road traffic are the major source of pollution within the city.

1.2 Purpose of Report

This report fulfils the requirements of the Local Air Quality Management process as set out in Part IV of the Environment Act (1995), the Air Quality Strategy for England, Scotland, Wales and Northern Ireland 2007 and the relevant Policy and Technical Guidance documents. The LAQM process places an obligation on all local authorities to regularly review and assess air quality in their areas, and to determine whether or not the air quality objectives are likely to be achieved. Where exceedences are considered likely, the local authority must then declare an Air Quality Management Area (AQMA) and prepare an Air Quality Action Plan (AQAP) setting out the measures it intends to put in place in pursuit of the objectives.

The objective of this Updating and Screening Assessment is to identify any matters that have changed which may lead to risk of an air quality objective being exceeded. A checklist approach and screening tools are used to identify significant new sources or changes and whether there is a need for a Detailed Assessment. The USA report should provide an update of any outstanding information requested previously in Review and Assessment reports.

1.3 Air Quality Objectives

The air quality objectives applicable to LAQM **in England** are set out in the Air Quality (England) Regulations 2000 (SI 928), The Air Quality (England) (Amendment) Regulations 2002 (SI 3043), and are shown in Table 1.1. This table shows the objectives in units of microgrammes per cubic metre μ g/m³ (milligrammes per cubic metre, mg/m³ for carbon monoxide) with the number of exceedences in each year that are permitted (where applicable).

	Air Quality	v Objective	Date to be
Pollutant	Concentration	Measured as	achieved by
Bonzono	16.25 μg/m ³	Running annual mean	31.12.2003
Denzene	5.00 µg/m ³	Running annual mean	31.12.2010
1,3-Butadiene	2.25 µg/m ³	Running annual mean	31.12.2003
Carbon monoxide	10.0 mg/m ³	Running 8-hour mean	31.12.2003
Laad	0.5 µg/m³	Annual mean	31.12.2004
Lead	0.25 µg/m³	Annual mean	31.12.2008
Nitrogen dioxide	200 µg/m ³ not to be exceeded more than 18 times a year	1-hour mean	31.12.2005
	40 µg/m ³	Annual mean	31.12.2005
Particles (PM ₁₀) (gravimetric)	50 μg/m ³ , not to be exceeded more than 35 times a year	24-hour mean	31.12.2004
(3	40 µg/m³	Annual mean	31.12.2004

Table 1.1 Air Quality Objectives included in Regulations for the purpose ofLAQM in England

	350 µg/m ³ , not to be exceeded more than 24 times a year	1-hour mean	31.12.2004
Sulphur dioxide	125 µg/m ³ , not to be exceeded more than 3 times a year	24-hour mean	31.12.2004
	266 µg/m ³ , not to be exceeded more than 35 times a year	15-minute mean	31.12.2005

1.4 Summary of Previous Review and Assessments

This Progress Report continues round five of Coventry City Council's Review and Assessment cycle. The results of previous rounds are summarised below:

Round one, initiated in 1998, involved several stages:

- Stage 1 (Review and Assessment) involved the identification of the main sources of air pollution in and around Coventry, reviewing the levels of air pollutants for which prescribed standards and objectives had been set, and estimating the likely future levels.
- **Stage 2** required the local authority to provide further screening of pollutant concentrations within the area. The purpose of screening was to assess whether the air quality objectives would be achieved by the target date.
- Stage 3 was a more complex assessment of monitoring and modelling.

For **Round Two** the review and assessment process was revised to include an **Updating and Screening Assessment (USA),** followed by a **Detailed Assessment** whenever necessary. The USA identified two locations in Coventry that were assessed to be unlikely to meet the annual mean objective for nitrogen dioxide by the target date of 2005. These were the Ball Hill area of Walsgrave Road and an area of the city centre including Trinity Street and the Burges. They were both designated as Air Quality Management Areas (AQMAs) in August 2003.

As exceedences of the Air Quality Objectives were predicted in the USA a **Detailed Assessment** was produced. The outcome of which was that the junction of Queensland Avenue and Allesley Old Road was also unlikely to meet the 2005 annual mean objective for NO₂ and was declared an AQMA in August 2004.

For **Round Three**, an **Updating and Screening Assessment** was completed in **2006**, which found that for the majority of pollutants, levels in Coventry still remain below the UK objectives. The exception to this was nitrogen dioxide where more areas were found to exceed the UK objective annual mean for 2005 and will require Detailed Assessment. These areas were:

- Foleshill Road
- London Road / Tollbar Island
- Radford Road / Beake Avenue junction (if residential property is introduced)
- Spon End / Hearsall Lane
- Stoney Stanton Road
- Croft Road, City Centre

The **2007 Detailed Assessment** found that all areas identified by the USA were confirmed as exceeding the UK objective for annual mean NO₂. Following DEFRA's suggestion that conjoining areas should be designated a single AQMA, the City Council had to consult and determine whether to:

a) designate the whole of Coventry an AQMA, or

b) designate two separate AQMAs; one covering the city centre and northern area of the city and one covering Tollbar End.

A **Progress Report** was produced in **2008**, which indicated exceedences of the NO₂ annual mean objective at the following locations:

- Stoney Stanton Road
- Foleshill Road / Longford Road
- Beake Avenue / Radford Road junction
- Tollbar End
- Croft Road / Victoria Road
- London Road near the Ringway
- Holyhead Road

• Fairfax Street

but not at Spon End / Hearsall Lane as indicated by the Detailed Assessment.

However the **Updating and Screening Assessment of 2009**, beginning the fourth round of review and assessment, found exceedence of NO₂ at Spon End/ Hearsall Lane as the **Detailed Assessment of 2007** had predicted but was not found to be the case in the **Progress Report of 2008**.

A city wide AQMA for nitrogen dioxide was declared, effective from 1st November 2009. Subsequent to this a further assessment must be completed within 12 months, together with an Air Quality Action Plan.

The 2010 **Progress Report** indicated that the following areas showed exceedences of the NO_2 annual mean objective:

- Ball Hill, Walsgrave Road
- Trinity Street
- Fairfax Street
- Queensland Avenue
- Tollbar End, London Road
- Foleshill Road

Coventry was to develop an Air Quality Action Plan subsequent to the declaration of the city-wide AQMA. The boundary of the city-wide AQMA is shown in Figure 1.1.

The **Further Assessment produced in January 2014** as part of the fifth round of review and assessment concluded that levels of nitrogen dioxide in the city have not reduced and continue to exceed the national air quality objectives at key locations influenced by local traffic.

A **Progress Report** was produced in July 2014 which reviewed data collected during 2011, 2012 and 2013. The report confirmed the conclusions of the Further Assessment in that levels of nitrogen dioxide in the city have not reduced and

continue to exceed the national air quality objectives at key locations influenced by local traffic.

Timescales for the submission of documents required under Local Air Quality Management (LAQM) are given in Box 1.3 of LAQM.TG (09). The documents published by Coventry City Council as part of its obligations under LAQM, are summarised in Table 1. below. Formal extensions to the submission of documents required under LAQM have been given by DEFRA, due to a lack of resources available within Coventry City Council as a result of financial restraints, and an ongoing service review.

Year	Туре	Summary
1998	Stage 1 (Round	The main sources of air pollution within and around
	1)	Coventry City Council's boundary were identified,
		reviewing the levels of air pollutants for which
		prescribed standards and objectives have been set,
		and estimating the likely future levels.
2000	Stage 2 (Round	Coventry City Council provided further screening of
	1)	pollutant concentrations within the area. The purpose
		of screening was to assess whether the air quality
		objectives would be achieved by the target date.
2001	Stage 3 (Round	Coventry City Council carried out a more complex
	1)	assessment of monitoring and modelling which led to
		the declaration of the first two of the city's AQMAs.
2003	Updating and	Two locations in Coventry were assessed to be
	Screening	unlikely to meet the annual mean objective for
	Assessment	nitrogen dioxide by the target date of 2005. These
	(Round 2)	were the Ball Hill area of Walsgrave Road and an
		area of the city centre including Trinity Street and the
		Burges. They were both designated as AQMAs in
		August 2003.
2004	Detailed	The junction of Queensland Avenue and Allesley Old

Table 1.2 Summary of previous Review and Assessment reports

Year	Туре	Summary
	Assessment	Road was also unlikely to meet the 2005 annual mean
	(Round 2)	objective for nitrogen dioxide by 2005 and was
		declared an AQMA in August 2004.
2006	Updating and	For the majority of pollutants, levels in Coventry still
	Screening	remain below the UK objectives. The exception to this
	Assessment	is nitrogen dioxide where more areas have been
	(Round 3)	found to exceed the UK objective annual mean for
		2005 and will need to proceed to Detailed
		Assessment.
		The USA also concluded that given the number of
		areas to proceed to Detailed Assessment it is highly
		likely that Coventry will have to declare further Air
		Quality Management Areas.
2007	Detailed	All areas identified by the Updating and Screening
	Assessment	Assessment 2006 were confirmed as exceeding the
	(Round 3)	UK objective for annual mean nitrogen dioxide.
2008	Progress Report	The Progress Report indicates exceedences of the
	(Round 3)	NO ₂ annual mean objective at a number of locations
		across the city.
2009	Updating and	A number of locations outside the AQMAs continued
	Screening	to exceed NO2 objectives. Including Spon End/
	Assessment	Hearsall avenue as was indicated by detailed
	(Round 4)	assessment of 2007 but not 2008 Progress Report.
2010	Progress Report	A city-wide AQMA was declared, effective from 1 st
	(Round 4)	November 2009. Several areas of Coventry continued
		to exceed the annual mean objective for NO_2 .
2013	Further	Levels of nitrogen dioxide continue to exceed the
	Assessment	national air quality objectives at key locations
		influenced by local traffic, confirming the need to
		retain the city-wide AQMA
2014	Progress Report	Levels of nitrogen dioxide continue to exceed the
	(Round 5)	national air quality objectives at key locations

Year	Туре	Summary
		influenced by local traffic.

Figure 1.1 Coventry City Council's AQMA boundary

This Map is reproduced from the Ordnance Survey mapping with the permission of the controller of Her Majesty's Stationery Office © Crown Copyright. Unauthorised reproduction infringes Crown Copyright and may lead to prosecution or civil proceedings. 100026294 (2011).

© NERC. All rights reserved. © Landmark Information Group LM00080 & HLUD0002. Cities Revealed ® copyright by the GeoInformation © Group 2001, All rights reserved. Other data © Coventry City Council

2 New Monitoring Data

2.1 Summary of Monitoring Undertaken

2.1.1 Automatic Monitoring Sites

The authority currently has 3 automatic monitoring units, all measuring nitrogen dioxide and PM10. These units are located on Foleshill Road, Queensland Avenue and Ball Hill at roadside locations. Two other units at Hales Street and Tollbar End have not been operational since July 2013 and have now been decommissioned. Plans are also in place to decommission the remaining units during 2015 and revert to diffusion tubes as the main source of monitoring.

The data capture rates have improved since the progress report in 2014, although the Foleshill Road and Ball Hill units still have capture rates below the 85% required by Defra due to on-going technical issues. The location of the units is shown in figure 2.1 and more detailed information is contained in Table 2.1.

QA/QC of automatic monitoring

Each NOx analyser is operated according to manufacturers' instructions. Coventry City Council officers carry out calibration of the equipment every two weeks. Certified Calibration Gas is supplied by BOC and this is used to obtain a span value for each analyser during the calibration. The equipment is also tested against zero air. The data is collected and scaled, and any instrumental drift is corrected during data processing. The filter is changed after every calibration. Engineers from TRL Ltd service the analysers at six monthly intervals

A visual inspection of the TEOM analyser is carried out fortnightly, and the filter changed as required during routine site visits. All site visits are documented to ensure any problems are recorded and any works noted. All calibrations are recorded.

Data report for Ball Hill 2014

There was missing data in the middle part of the year caused by power interruptions. However, those data available indicates a reasonably stable performance. The overall data capture rate was better than the previous year at 80%. There were two recorded service visits by the ESU.

The calibration visits carried out by the site operator showed only slight variations in the zero and span that were within an acceptable range. Only minor adjustments were required to the zero. The span values were generally within 10% and those values were used to adjust the recorded data. There was no obvious step change in instrument response.

Changes to data (NOx)

Removal of those data recorded during service or calibration visits and minor adjustment of the zero have been made. Scaling adjustments were made to the data, interpolating between a ratio of 0.85 to 1.07 for both the NOx and NO. From those adjusted data the nitrogen dioxide concentration was calculated by difference. Those adjusted data were then written to the Airviro Time Series Database (hourly) as instance VAL. The use of a calculated NO₂ by difference is common within the air quality community. The analysers used by the City only ever measure nitric oxide directly and calculate the reported nitrogen dioxide by difference.

Comment

The annual mean result for nitrogen dioxide is 49µgm³, which exceeds the national target of 40µgm³ by 23%. Exceedance of the hourly mean (200µgm³) only occurred on 12 occasions, which is within the national target of 18.

Changes to PM₁₀ data

The PM_{10} data for this site was stable, but in common with the rest of the sites there were power interruptions that reduced the data capture rate to 79%. The data was cleaned by removing a small number of transients that were due to operator filter changes etc. Although not deemed to be equivalent to the reference method, the data was screened using the Kings College Volatile Correction Model which gave results slightly different to the raw data. Particle data treated in this way have, in the past, been deemed to be sufficiently accurate to demonstrate likely compliance. The concentrations of PM_{10} at this site are not likely to exceed the National Air Quality Objective.

Data report for Foleshill Road 2014

There was very little data missing for this site with an initial data capture rate of approximately 93%. However, there was some poor quality data that could not be used due to an instrument fault during April and June resulting in an overall capture rate of 84%. (the same as 2013).

There were four recorded service visit by the ESU including the visits made by the ESU to rectify instrument faults identified as needing repair.

The calibrations carried out by the site operator following a service visit by the ESU, demonstrated that the NOx analyser response to calibration gas was producing lower values than were expected but were in general, stable. Those data recorded during the time the instrument was faulty could not be used and were discounted from the data set. The zero response was within tolerance being in the order of 5µg variance.

Changes to data (NOx)

Removal of those data recorded during service or calibration visit and minor adjustment of the zero have been made. Scaling adjustments were made to the data, interpolating between a ratio of 1.02:1.0 to 1.54:1.0 for both the NOx and NO. From those adjusted data, the nitrogen dioxide concentration was calculated by difference and written to the Airviro Time Series Database (hourly) as instance VAL(m). The use of a calculated NO₂ by difference is common within the air quality community. The analysers used by the City only ever measure nitric oxide directly and calculate the reported nitrogen dioxide by difference. It is worth noting that the annual mean nitrogen dioxide as measured by the instruments is very similar to the uncorrected diffusion tube data for this site.

Comment

No exceedences of national targets for nitrogen dioxide (annual or hourly mean) took place at this site.

Changes to PM₁₀ data

The PM₁₀ data for this site was stable. The data was cleaned by removing a small number of transients that were due to operator filter changes etc. Also there were two occasions when the instrument developed a fault and lost its setup, thus the data collection for this analyser was 94%. Although not deemed to be equivalent to the reference method, the data was screened using the Kings College Volatile Correction Model which gave results not greatly different to the raw data. Particle data treated this way have in the past been deemed to be sufficiently accurate to demonstrate likely compliance. The concentrations of pm10 at this site are not likely to exceed the National Air Quality Objective.

Data report for Queensland Avenue 2014

This site showed a very good capture rate of 98% for the oxides of nitrogen and 99% for PM_{10} . However, the NOx analyser showed wildly varying responses to calibration gases. The PM_{10} appeared to be stable and performing as expected. There were two service visits by the ESU.

The calibration visits carried out by the site operator showed very large variations in the zero and span, major adjustments were required to the zero and span before the data became usable. There were obvious step changes in instrument response and these were highlighted by the LSO and recorded on their site records.

Changes to data (NOx)

Removal of those data recorded during service or calibration visits was carried out. Scaling adjustments were then made to the data, interpolating between a ratio of 0.39 to 1.75 for both the NOx and NO. From those adjusted data the nitrogen dioxide concentration was calculated by difference. Those adjusted data were then written to the Airviro Time Series Database (hourly) as instance VAL. The use of a calculated NO₂ by difference is common within the air quality community. The analysers used by the City only ever measure nitric oxide directly and calculate the reported nitrogen dioxide as measured by the instruments is of the same order as the uncorrected diffusion tube data for this site.

Comment

Whilst this site does not exceed the air quality objective, the data produced with such a poorly performing analyser is considered unreliable.

Changes to PM₁₀ data

The PM_{10} data for this site was stable with a 'raw' data capture rate of 99%. Although not deemed to be equivalent to the reference method, the data was screened using the Kings College Volatile Correction Model which gave results slightly different to the raw data. Particle data treated this way have in the past been deemed to be sufficiently accurate to demonstrate likely compliance. The concentrations of PM_{10} at this site are not likely to exceed the National Air Quality Objective.

Figure 2.1 Map of Automatic Monitoring Sites

Table 2.1 Details of Automatic Monitoring Sites

Site Name	Site Type	OS Grid Ref		OS Grid Ref		OS Grid Ref Pollutants Monitored		Monitoring Technique	In AQMA?	Relevant Exposure? (Y/N with distance (m) to relevant exposure)	Distance to kerb of nearest road (N/A if not applicable)	Does this location represent worst- case exposure?
Queensland Avenue	Roadside	X 431572	Y 27902 2	PM ₁₀ NO ₂	TEOM- VCM method applied	Y	Y(9m)	3.5m	Ν			
Foleshill Road	Roadside	X 434251	Y 28151 2	PM ₁₀ NO ₂	TEOM- VCM method applied	Y	Y(9m)	6m	N			
Ball Hill	Roadside	X 435129	Y 279282	PM ₁₀ NO ₂	TEOM- VCM method applied	Y	Y(2.5m)	3.5m	Ν			

2.1.2 Non-Automatic Monitoring Sites

Coventry City Council operates a network of diffusion tubes around the city, as shown in Figure 2.2. In 2011 there were 127 tubes, reducing to 118 tubes in 2012 and rising again to 125 tubes by the end of 2013. Following review, Coventry currently has 53 tubes around the city. Details of the locations of NO_2 diffusion tubes can be found in Table 2.2.

Coventry City Council use Gradko International for analysis of diffusion tubes. The preparation method used is 20% TEA in water.

The diffusion tube results have been bias adjusted using the National Diffusion Tube Bias Adjustment Factor Spreadsheet, as historically Coventry's continuous monitoring stations have not had sufficient data capture to produce a robust adjustment factor and so triplicate tubes have been removed to save money.

QA/QC of non-automatic monitoring

Gradko International is part of the Workplace Analysis Scheme for Proficiency (WASP), and in 2013 they were deemed to be 100% satisfactory. The tubes are stored and deployed according to the manufacturer's instructions and field and fridge blanks are used each month to ensure that no contamination has occurred.

Figure 2.2 Map of Non-Automatic Monitoring Sites

Table 2.2 Details of Non-Automatic Monitoring Sites

Site ID	Site Name	Site Type	X OS Grid Reference	Y OS Grid Reference	Site Height (m)	Pollutants Monitored	In AQMA?	Is Monitoring Co-located with a Continuous Analyser (Y/N)	Relevant Exposure? (Y/N with distance (m) from monitoring site to relevant exposure)	Distance to Kerb of Nearest Road (m) (N/A if not applicable)	Does this Location Represent Worst- Case Exposure?
CCO1*/1N	Holyhead Road	Roadside	432105	279578	1.6	NO ₂	Y	Ν	Y(7.2m)	3.1	Y
HR1	Holyhead Road	Façade	432683	279240	2.7	NO ₂	Y	Ν	Y(0m)	5.8	Y
BH1	Ball Hill	Roadside	434966	279204	3.5	NO ₂	Y	Ν	Y(5.2m)	2.6	Y
BH2a	Ball Hill	Façade	435126	279286	2.8	NO ₂	Y	Ν	Y(0m)	3.9	Y
BH4	Ball Hill	Roadside	435331	279358	1.8	NO ₂	Y	Ν	Y(3.5m)	1.3	Y
BH6i	Ball Hill	Roadside	435184	279298	3.1	NO ₂	Y	Y	Y(4.5m)	1.0	Y
BH10	Ball Hill	Roadside	435189	279281	3.1	NO ₂	Y	Ν	Y(2m)	0.1	Y
BH13	Walsgrave Road	Façade	435508	279387	2.5	NO ₂	Y	Ν	Y(0m)	5.2	Y
BH14	Walsgrave Road	Roadside	435658	279357	2.5	NO ₂	Y	Ν	Y(9m)	2.6	Y
FS1	City Centre	Roadside	433569	279234	3	NO ₂	Y	Ν	Y(4.9m)	1	Y
CS1	City Centre	Roadside	433204	279234	2.7	NO ₂	Y	Ν	Y(22m)	1.9	Y
CS2	City Centre	Roadside	433322	279500	2.85	NO ₂	Y	Ν	Y(12m)	1.7	Y
HS2	City Centre	Roadside	433420	279236	3.0	NO ₂	Y	Ν	Y(35m)	2.0	Y

Site ID	Site Name	Site Type	X OS Grid Reference	Y OS Grid Reference	Site Height (m)	Pollutants Monitored	In AQMA?	Is Monitoring Co-located with a Continuous Analyser (Y/N)	Relevant Exposure? (Y/N with distance (m) from monitoring site to relevant exposure)	Distance to Kerb of Nearest Road (m) (N/A if not applicable)	Does this Location Represent Worst- Case Exposure?
LON12	London Road	Façade	434075	278450	2.3	NO ₂	Y	N	Y(0m)	5.1	Y
SE1	Spon End	Roadside	432084	279042	2.5	NO ₂	Y	Ν	Y(2.6m)	0.1	Y
SE3	Spon End	Façade	432303	279028	2.5	NO ₂	Y	Ν	Y(0m)	2.3	Y
QAV01	Queensland Avenue	Roadside	431595	278991	2.5	NO ₂	Y	Ν	Y(3m)	0.1	Y
QAV8	Queensland Avenue	Roadside	431573	279020	3.1	NO ₂	Y	Y	Y(10.8m)	4.9	Y
QAV12	Queensland Avenue	Façade	431704	278680	2	NO ₂	Y	Ν	Y(0m)	4.3	Y
QAV13	Queensland Avenue	Façade	431763	278657	2.5	NO ₂	Y	Ν	Y(0m)	4.9	Υ
R1	Foleshill Road	Roadside	434250	281513	3.3	NO ₂	Y	Ν	Y(13.2m)	5.1	Y
R4	Foleshill Road	Façade	434233	281526	3.75	NO ₂	Y	Ν	Y(0m)	8.8	Y
R5	Foleshill Road	Façade	433716	280503	2.8	NO ₂	Y	Ν	Y(0m)	3.7	Y
R6	Foleshill Road	Façade	433617	280276	2.75	NO ₂	Y	Y	Y(0m)	4.9	Y
R8	Foleshill Road	Façade	433992	281008	3.1	NO ₂	Y	Ν	Y(0m)	4.3	Y
R9	Foleshill Road	Roadside	434059	281105	3	NO ₂	Y	Ν	Y(4.9m)	3.0	Υ
LR1	Longford Road	Façade	434836	283030	2	NO ₂	Y	Ν	Y(0m)	5.6	Y
LR2	Longford Road	Façade	434880	283077	2	NO ₂	Y	N	Y(0m)	4.2	Y

Site ID	Site Name	Site Type	X OS Grid Reference	Y OS Grid Reference	Site Height (m)	Pollutants Monitored	In AQMA?	Is Monitoring Co-located with a Continuous Analyser (Y/N)	Relevant Exposure? (Y/N with distance (m) from monitoring site to relevant exposure)	Distance to Kerb of Nearest Road (m) (N/A if not applicable)	Does this Location Represent Worst- Case Exposure?
LR3	Longford Road	Façade	435016	283515	1.5	NO ₂	Y	Ν	Y(0m)	8.5	Y
BRN2	Burnaby Road	Façade	433605	281965	2.75	NO ₂	Y	Ν	Y(0m)	5.5	Y
BA1	Beake Avenue/Radford Road	Roadside	432531	280769	3	NO ₂	Y	Ν	Y(7.5m)	2.2	Y
SS1	Stoney Stanton Road	Façade	434062	280082	2.5	NO ₂	Y	N	Y(0m)	3.7	Y
SS2	Stoney Stanton Road	Façade	433994	279969	2.5	NO ₂	Y	N	Y(0m)	4.5	Y
SS3	Stoney Stanton Road	Façade	434842	281272	2.5	NO ₂	Y	Ν	Y(0m)	4.5	Y
SS5	Stoney Stanton Road	Façade	433847	279814	1.5	NO ₂	Y	N	Y(0m)	3.0	Y
EH1	Earlsdon High Street	Façade	431978	278050	2.75	NO ₂	Y	N	Y(0m)	4.6	Y
BELL1	Bell Green	Façade	435849	282211	2.8	NO ₂	Y	N	Y (0m)	1.7	Y
BELL2	Bell Green	Façade	435826	282158	2.5	NO ₂	Y	Ν	Y (0m)	5.7	Y
FGS1	Far Gosford Street	Façade	434330	278973	2.7	NO ₂	Y	N	Y (0m)	2.9	Y
FGS2	Far Gosford Street	Façade	434450	279001	2.7	NO ₂	Y	N	Y (0m)	5.1	Y
FGS3	Far Gosford Street	Façade	434530	279026	2.7	NO ₂	Y	Ν	Y (0m)	2.4	Y

Site ID	Site Name	Site Type	X OS Grid Reference	Y OS Grid Reference	Site Height (m)	Pollutants Monitored	In AQMA?	Is Monitoring Co-located with a Continuous Analyser (Y/N)	Relevant Exposure? (Y/N with distance (m) from monitoring site to relevant exposure)	Distance to Kerb of Nearest Road (m) (N/A if not applicable)	Does this Location Represent Worst- Case Exposure?
GR1	Gulson Road	Façade	434678	278922	2.5	NO ₂	Y	Ν	Y(0m)	4.5	Y
Grange2	Grange Road N of M6	Roadside	435765	284246	2.1	NO ₂	Y	Ν	Y(1.74)	0.3	Y
Grange 3	Grange Road	Roadside	435790	284285	2.4	NO ₂	Y	Ν	Y(1.74m)	0.3	Y
AGR1	Inside compound M6 contribution only	Roadside	436262	283893	2.5	NO ₂	Y	Ν	N/A	17.5	N/A
AGR2	Aldermans Green Road N of M6	Roadside	436286	283860	2.3	NO ₂	Y	Ν	Y(10m)	1.75	Y
SW1	Swan Lane	Façade	434898	279587	2.7	NO ₂	Y	Ν	Y(0m)	4.7	Y
SW2	Swan Lane	Roadside	434897	279484	2.5	NO ₂	Y	Ν	Y(5.2m)	1.4	Y
GS1	Gosford Street	Façade	433899	278845	2.8	NO ₂	Y	Ν	Y(0m)	9.8	Y
GF1	Greyfriars Lane	Facade	433407	278882	2.6	NO ₂	Y	Ν	Y(0m)	0.47	Y
TS3	Trinity Street	Roadside	433492	279239	2.3	NO ₂	Y	Ν	Y(3.28m)	2.4	Y
QV1	Queen Victoria Road	Roadside	433029	278798	2.5	NO ₂	Y	Ν	Y(4m)	1.95	Y
JL1	St. James Lane	Façade	436092	276296	2.2	NO ₂	Y	N	Y(0m)	3.95	Y

2.2 Comparison of Monitoring Results with Air Quality Objectives

2.2.1 Nitrogen Dioxide

Automatic Monitoring Data

Data capture rates in some periods and locations were less than the 85% required by DEFRA due to technical difficulties at some of the stations.

A summary of the annual mean data for each station in the past 3 years is given in table 2.3 below. Where no data is reported (-) technical difficulties resulted in significant data losses.

			Valid Data		Annual Mean Concentration μg/m ³						
Site ID	Site Type	Within AQMA?	Capture for period of monitoring % ^a	Valid Data Capture 2014 % ^b	2010* ^c	2011* ^c	2012* ^c	2013* ^c	2014 ^c		
Ball Hill	Roadside	Y	80	80	49 ⁹³	41 ⁹⁵	55 ⁷¹	45 ⁶⁵	49		
Foleshill Road	Roadside	Y	84	84	39.8 ⁷⁵	30 ⁸⁴	29 ⁹⁹	28 ⁸⁴	33		
Queensland Avenue	Roadside	Y	98	98	-	33 ⁶⁶	37 ³⁹	33 ⁵²	38		

Table 2.3 Results of Automatic Monitoring of Nitrogen Dioxide: Comparison with Annual Mean Objective

*Superscript figures denote data capture rate as a percentage

Exceedences of annual mean are highlighted in bold

Figure 2.3 Trends in Annual Mean Nitrogen Dioxide Concentrations measures at Automatic Monitoring Sites

Due to the fact that that data capture has not been above the 85% recommended by Defra at all sites and years, any trend analysis of the data should be taken as indicative only

Ball Hill shows an exceedence of the air quality standard for the last five years with no overall trend to the annual averages.

The data for Foleshill Road shows the concentrations being consistently within the air quality standard, again with no clear trend over the past five years.

The data for Queensland Avenue also shows the concentrations to be consistently within the air quality objective, again with no clear trend over the past four years.

The above graph shows the average diurnal values for the three currently operational continuous monitoring stations for 2012. The values for Foleshill Road and Queensland Avenue show clear peaks that coincide with peak traffic flows for the morning and evening rush hours. The values for Ball Hill are consistently above those recorded by the other units and do not dip again after the morning rush hour, suggesting that the nitrogen dioxide does not disperse and traffic flows remain high during the day.

The above graph shows the average diurnal values for the three currently operational continuous monitoring stations for 2013. As in 2012, the values for Foleshill Road and Queensland Avenue show clear peaks that coincide with peak traffic flows for the morning and evening rush hours. The values for Ball Hill are consistently above those recorded by the other units and do not dip again after the morning rush hour, suggesting that the nitrogen dioxide does not disperse and traffic flows remain high during the day.

The above graph shows the average diurnal values for the three currently operational continuous monitoring stations for 2014. As in 2012, the values for Foleshill Road and Queensland Avenue show clear peaks that coincide with peak traffic flows for the morning and evening rush hours. The values for Ball Hill dip more noticeably again after the morning rush hour, suggesting that the traffic flows are now dropping during the day.

All three graphs show a sharper peak for the morning rush hour suggesting that there are more traffic movements over a shorter time period than the evening rush hour which has a similarly high peak but is more spread out suggesting that the traffic migration period is over a longer time period in the evening period.

Table 2.4 Results of Automatic Monitoring for Nitrogen Dioxide: Comparison with 1-hour mean Objective

			Valid Data		Number o	Number of Exceedences of Hourly Mean (200 μg/m ³)							
Site ID	Site Type	Within AQMA?	Capture for period of monitoring % ^a	Valid Data Capture 2014 % ^b	2010* ^c	2011* ^c	2012* ^c	2013* ^c	2014 ^c				
Ball Hill	Roadside	Y	80	80	0	0	0(139)	0(115)	12(196)				
Foleshill Road	Roadside	Y	84	84	0(144.7)	0	0	0(101)	0(99)				
Queensland Avenue	Roadside	Υ	98	98	-	0	0(119)	0(173)	7				

In 2014 the data capture rate was below 90% at Ball Hill and Foleshill Road and therefore the 99.8th percentile of the hourly data was calculated. No sites showed more than 18 exceedences of the hourly mean thus there are no breaches of the hourly standard.

Shows we have no need for continuous monitors as only exceeding annual average. Supports losing AQ units

Diffusion Tube Monitoring Data

By December 2013, again due to a lack of resources, all triplicate tubes and all tubes with values consistently below 40 μ g/m³ had been removed. 8 new tubes were situated in sites where new receptors had been identified as part of continuing city development. There are currently 53 tubes in Coventry. Tubes will continue to be relocated throughout 2015 as development of the city continues to result in new traffic flows and new receptors in areas of heavy traffic.

					Data Capture	Data with less than 9	Confirm if data has	Annual mean concentration
				Triplicate	2014	months has	been	(Bias Adjustment
				or	(Number	been	distance	factor = 0.91)
		Site	Within	Collocated	of Months	annualised	corrected	
Site ID	Location	Туре	AQMA?	Tube	or %)	(Y/N)	(Y/N)	2014 (µg/m³)
CCO1*/1N	Holyhead Road	Roadside	Y	N	92%	-	Y	39.3
HR1	Holyhead Road	Façade	Y	N	75%	-	Y	<u>63.1</u>
BH1	Ball Hill	Roadside	Y	N	83%	-	Y	39.0
BH2a	Ball Hill	Façade	Y	N	83%	-	Y	48.9
BH4	Ball Hill	Roadside	Y	N	92%	-	Y	47.0
BH6i	Ball Hill	Roadside	Y	N	75%	-	Y	42.3
BH10	Ball Hill	Roadside	Y	N	92%	-	Y	42.3
BH13	Walsgrave Road	Façade	Y	N	92%	-	Y	37.4
BH14	Walsgrave Road	Roadside	Y	N	92%	-	Y	36.7
FS1	City Centre	Roadside	Y	N	92%	-	Y	44.2
CS1	City Centre	Roadside	Y	N	92%	-	Y	38.1
CS2	City Centre	Roadside	Y	N	92%	-	Y	38.0
HS2	City Centre		Y	N	92%	-	Y	35.6
LON12	London Road	Façade	Y	N	42%	Y	Y	43.9
SE1	Spon End	Roadside	Y	N	92%	-	Y	36.1
SE3	Spon End	Façade	Y	N	92%	-	Y	41.4
QAV01	Queensland Avenue	Roadside	Y	N	83%	-	Y	35.0
QAV8	Queensland Avenue	Roadside	Y	N	75%	-	Y	29.6
QAV12	Queensland Avenue	Façade	Y	N	75%	-	Y	38.5
QAV13	Queensland Avenue	Façade	Y	N	92%	-	Y	43.3
R1	Foleshill Road	Roadside	Y	N	83%	-	Y	31.2

Table 2.5 Results of Nitrogen Dioxide Diffusion Tubes in 2014

					Data Capture	Data with less than 9	Confirm if data has	Annual mean concentration
				Triplicate	2014	months has	been	(Bias Adjustment
				or	(Number	been	distance	factor = 0.91)
		Site	Within	Collocated	of Months	annualised	corrected	2
Site ID	Location	Туре	AQMA?	Tube	or %)	(Y/N)	(Y/N)	2014 (μg/m³)
R4	Foleshill Road	Façade	Y	N	92%	-	Y	39.6
R5	Foleshill Road	Façade	Y	N	83%	-	Y	44.9
R6	Foleshill Road	Façade	Y	N	50%	Y	Y	52.9
R8	Foleshill Road	Façade	Y	N	92%	-	Y	38.9
R9	Foleshill Road	Roadside	Y	N	83%	-	Y	41.2
LR1	Longford Road	Façade	Y	N	92%	-	Y	44.0
LR2	Longford Road	Façade	Y	N	92%	-	Y	43.4
LR3	Longford Road	Façade	Y	N	92%	-	Y	44.6
BRN2	Burnaby Road	Façade		N	92%	-	Y	39.1
	Beake						Y	38.3
BA1	Avenue/Radford Road	Roadside	Y	N	33%	Y		
SS1	Stoney Stanton Road	Façade	Y	N	83%	-	Y	36.8
SS2	Stoney Stanton Road	Façade	Y	N	92%	-	Y	38.1
SS3	Stoney Stanton Road	Façade	Y	N	92%	-	Y	39.1
SS5	Stoney Stanton Road	Façade	Y	N	92%	-	Y	49.2
EH1	Earlsdon High Street	Façade	Y	N	83%	-	Y	35.7
BELL1	Bell Green	Façade	Y	N	92%	-	Y	40.2
BELL2	Bell Green	Façade	Y	N	92%	-	Y	38.9
FGS1	Far Gosford Street	Façade	Y	N	92%	-	Y	41.7
FGS2	Far Gosford Street	Façade	Y	N	92%	-	Y	38.9

				Triplicate or	Data Capture 2014 (Number	Data with less than 9 months has been	Confirm if data has been distance	Annual mean concentration (Bias Adjustment factor = 0.91)
Site ID	Location	Site Type	Within	Collocated	of Months	annualised	corrected	$2014 (ug/m^3)$
	Eocation For Conford	туре		Tube	01 /0)	(1/18)		2014 (µg/m)
FGS3	Street	Façade	Y	N	83%	-	Ŷ	42.7
GR1	Gulson Road	Façade	Y	N	92%	-	Y	36.5
Grange2	Grange Road N of M6	Roadside	Y	N	50%	Y	Y	42.9
Grange 3	Grange Road	Roadside	Y	N	58%	Y	Y	43.0
AGR1	Inside compound M6 contribution only	Roadside	Y	N	92%	_	Y	/
AGR2	Aldermans Green Road N of M6	Roadside	Y	N	67%	Y	Y	30.4
SW1	Swan Lane	Façade	Y	N	92%	-	Y	30.5
SW2	Swan Lane	Roadside	Y	N	83%	-	Y	32.0
GS1	Gosford Street	Façade	Y	N	92%	-	Y	44.5
GF1	Greyfriars Lane	Facade	Y	N	83%	-	Y	37.8
TS3	Trinity Street	Roadside	Y	N	83%	-	Y	47.9
QV1	Queen Victoria Road	Roadside	Y	N	83%	-	Y	39.8
JL1	St. James Lane	Façade	Y	N	58%	Y	Y	27.6

				Annual mean cor	ncentration (adjuste	ed for bias) μg/m ³	
			2010*	2011*	2012*	2013*	2014
	Site	Within	(Bias Adjustment	(Bias Adjustment	(Bias Adjustment	(Bias Adjustment	(Bias Adjustment
Site ID	Туре	AQMA?	Factor = 0.92)	Factor = 0.90)	Factor = 0.96)	Factor = 0.95)	Factor = 0.91)
CCO1*/1N	Roadside	Y	33.89	38.15	41.7	32.5	39.3
HR1	Façade	Y	/	48.67	<u>63.5</u>	<u>60.4</u>	<u>63.1</u>
BH1	Roadside	Y	/	48.34	52.8	41.2	39.0
BH2a	Façade	Y	29.02	29.47	<u>77.4</u>	53.8	48.9
BH4	Roadside	Y	43.88	45.21	56.1	46.2	47.0
BH6i	Roadside	Y	44.71	48.47	/	44.7	42.3
BH10	Roadside	Y	43.88	45.21	53.7	45.3	42.3
BH13	Façade	Y	/	37.28	42.9	41.2	37.4
BH14	Roadside	Y	/	/	43.9	36.2	36.7
FS1	Roadside	Y	57.07	<u>68.26</u>	<u>60.0</u>	49.6	44.2
CS1	Roadside	Y	/	36.26	40.5	39.8	38.1
CS2	Roadside	Y	/	46.34	49.1	45.9	38.0
HS2	Roadside	Y	33.58	29.47	37.2	33.2	35.6
LON12	Façade	Y	38.34	44.01	45.8	44.0	43.9
SE1	Roadside	Y	37.86	38.55	38.1	37.0	36.1
SE3	Façade	Y	36.81	38.73	46.4	42.5	41.4
QAV01	Roadside	Y	41.05	43.37	39.1	38.1	35.0
QAV8	Roadside	Y	25.84	25.53	44.5	30.7	29.6
QAV12	Façade	Y	26.13	38.26	41.6	39.4	38.5
QAV13	Façade	Y	26.19	41.92	46.0	43.1	43.3
R1	Roadside	Y	29.37	27.80	33.9	31.3	31.2
R4	Façade	Y	36.77	36.77	39.5	40.1	39.6
R5	Façade	Y	42.15	42.15	53.4	48.8	44.9
R6	Façade	Y	48.98	48.98	58.5	55.7	52.9
R8	Façade	Y	38.30	38.30	41.5	43.0	38.9
R9	Roadside	Y	34.63	34.63	46.6	45.8	41.2

Table 2.6 Results of Nitrogen Dioxide Diffusion Tubes (2010 to 2014)

				Annual mean concentration (adjusted for bias) μg/m³ 2010* 2011* 2012* 2013* 2014									
			2010*	2011*	2012*	2013*	2014						
	Site	Within	(Bias Adjustment	(Bias Adjustment	(Bias Adjustment	(Bias Adjustment	(Bias Adjustment						
Site ID	Туре	AQMA?	Factor = 0.92)	Factor = 0.90)	Factor = 0.96)	Factor = 0.95)	Factor = 0.91)						
LR1	Façade	Y	42.85	42.18	47.6	42.6	44.0						
LR2	Façade	Y	42.60	44.85	47.2	47.4	43.4						
LR3	Façade	Y	40.63	41.56	<u>64.7</u>	46.5	44.6						
BRN2	Façade	Y	36.47	38.84	44.7	38.9	39.1						
BA1	Roadside	Y	34.89	39.99	59.8	32.9	38.3						
SS1	Façade	Y	38.39	37.55	42.7	37.3	36.8						
SS2	Façade	Y	38.76	37.53	43.2	39.0	38.1						
SS3	Façade	Y	37.74	38.68	40.9	39.0	39.1						
SS5	Façade	Y	40.06	42.67	51.8	50.7	49.2						
EH1	Façade	Y	37.23	35.19	40.8	37.6	35.7						
BELL1	Façade	Y	/	39.98	44.1	42.3	40.2						
BELL2	Façade	Y	/	39.18	42.9	39.5	38.9						
FGS1	Façade	Y	/	41.39	45.0	43.9	41.7						
FGS2	Façade	Y	/	37.97	43.4	39.7	38.9						
FGS3	Façade	Y	/	38.18	47.4	44.0	42.7						
GR1	Façade	Y	/	37.25	40.8	37.7	36.5						
Grange2	Roadside	Y	/	/	37.6	38.2	42.9						
Grange 3	Roadside	Y	/	/	/	/	43.0						
AGR1	Roadside	Y	/	40.31	40.7	33.7	/						
AGR2	Roadside	Y	/	/	/	/	30.4						
SW1	Façade	Y	/	/	/	/	30.5						
SW2	Roadside	Y	/	/	/	/	32.0						
GS1	Façade	Y	/	/	/	/	44.5						
GF1	Facade	Y	/	/	/	/	37.8						
TS3	Roadside	Y	/	/	/	/	47.9						
QV1	Roadside	Y	/	/	/	/	39.8						
JL1	Façade	Y	/	/	/	/	27.6						

There is no overall trend in the results of diffusion tubes across the city, although all results show a peak in nitrogen dioxide concentrations in 2012.

There were no specific actions taken between 2009 and 2014 to reduce the levels of nitrogen dioxide, and therefore no significant reductions were anticipated. However, there has been a significant amount of work undertaken to improve traffic flows across Coventry and the pedestrianisation of parts of the city centre has led to improvements within these areas. The removal of planning controls that allows offices to be converted into housing has facilitated the emergence of several new receptors in areas of high nitrogen dioxide levels. For example Tube TS3 was placed next to an office block that was converted into accommodation and shows levels which exceed the annual mean for nitrogen dioxide at the façade of this building at $47.9 \,\mu\text{g/m}^3$.

In 2014, there were 22 tubes with exceedences of the annual mean $(40 \ \mu g/m^3)$ from a total of 53 results. Of these 1 tube exceeded 60 $\mu g/m^3$. This tube is located on the façade of a terrace house directly fronting a narrow pavement. There is no possibility of placing a continuous monitor in or near this location due to the lack of space.

The following graphs show the trend in nitrogen dioxide tube results for the past five years for five specific areas of the city. Whilst the majority of results show falling levels, there is one tube in each area that shows an increase.

Figure 2.4 Trends in Annual Mean Nitrogen Dioxide Concentrations measured at Diffusion Tube Monitoring Sites

2.2.2 Particulate Matter (PM₁₀)

All three of Coventry's continuous monitoring stations monitor for PM_{10} . All monitor PM_{10} using a Tapered Element Oscillating Microbalance (TEOM).

Concentrations of PM_{10} in 2014 are shown in Table 2.7 and 2.8. Where no data is reported (-) technical difficulties resulted in significant data losses.

Results show that concentrations of PM_{10} are not likely to have exceeded either the annual mean or 24 hours mean National Air Quality Objective at any of the sites within Coventry.

There is insufficient data to allow any trend analysis.

		Wit		Confirm	Annual Mean Concentration μg/m ³						
Site ID	Site Type	hin AQ MA ?	Valid Data Capture 2014 % ^b	Gravimetric Equivalent (Y or NA)	2010* ^c	2011* ^c	2012* ^c	2013* ^c	2014 ^c		
Ball Hill	Roadside	Y	80	Y	-	-	-	-	23		
Foleshill Road	Roadside	Y	84	Y	-	18	-	-	19		
Queensland Avenue	Roadside	Y	98	Y	-	16	22	-	19		

Table 2.7 Results of Automatic Monitoring of PM₁₀: Comparison with Annual Mean Objective

Table 2.8 Results of Automatic Monitoring for PM₁₀: Comparison with 24-hour mean Objective

					Numb	er of Exceede	ences of 24-He	our Mean (50	μ g/m³)
Site ID	Site Type	Within AQMA ?	Valid Data Capture 2014 %	Confirm Gravimetric Equivalent	2010* ^c	2011* ^c	2012* ^c	2013* ^c	2014 ^c
Ball Hill	Roadside	Y	80	Y	-	-	-	-	10
Foleshill Road	Roadside	Y	84	Y	-	18	-	-	2
Queensl and Avenue	Roadside	Y	98	Y	-	1	13	-	8

2.2.3 Sulphur Dioxide

Sulphur dioxide is not currently monitored by Coventry City Council.

2.2.4 Benzene

Benzene is not currently monitored by Coventry City Council.

2.2.5 Summary of Compliance with AQS Objectives

Coventry City Council has examined the results from monitoring in the City.

Concentrations within the AQMA still exceed the objective for nitrogen dioxide and the AQMA should remain. In particular, results derived from 22 of the 53 diffusion tubes showed exceedances and results from 1 out of the 3 automatic monitoring stations recorded an overall exceedance.

Since the existing AQMA is city wide, there is no need to proceed to any further Detailed Assessment.

3 Road Traffic Sources

Coventry is undergoing a concentrated phase of regeneration with increased pedestrianisation of the city centre and improvements to major traffic routes. There is also continuing development of residential and commercial sites, including mixed uses which are both having positive and negative effects on air quality.

There were changes to road traffic layouts between 2010-2013 which may have a cumulative impact on air quality measurements, these have been detailed in section 3 of the 2012-14 Progress Report.

In terms of assessing the impact on air quality resulting from new road schemes the intention is that more detailed assessments on air quality and monitoring will be undertaken when the routes are fully operational.

All the road schemes detailed below commenced construction in 2013/14 and controls have been put in place through the planning and construction process to limit and control emissions of dust and fumes. The proposed road schemes are designed to deliver improvements in terms of traffic flows, reducing congestion and improving air quality.

- The Tollbar Island (A45/A46) junction improvement forms a critical part of the network, and this junction is currently being upgraded at a cost of £106m to reduce queuing which should improve air quality and the scheme is due for completion in autumn 2016. The City Council is actively lobbying for further enhancements along the A46 corridor which will support further improvements to traffic flows and air quality.
- Friargate Junction 6 of ring road with bridge deck and closure of right turn traffic from Warwick Road on to ring road and into City Centre, commenced 2014. Road diversions have been put in place causing delays around Warwick Road and railway station area, Holyhead Road and Allesley Old Road. Expected completion 2015/16.
- Whitley Bridge New bridge over A444 into Jaguar Whitley site Underway Delays on A444
- Gibbet Hill Road New bus interchange involving long term temporary road closures – Underway
- Hospital Pinch point Various junction improvement schemes on Walsgrave/Ansty/Hinckley Road corridor – Underway
- Council House Square road narrowing and one-way system Complete, should be a resulting improvement in air quality as the traffic is now one way.
- Gosford St New roundabout Underway Some delays around Sky Blue Way

3.1 Narrow Congested Streets with Residential Properties Close to the Kerb

Coventry City Council confirms that there are no new/newly identified congested streets with a flow above 5,000 vehicles per day and residential properties close to the kerb, that have not been adequately considered in previous rounds of Review and Assessment.

3.2 Busy Streets Where People May Spend 1-hour or More Close to Traffic

Coventry City Council confirms that there are no new/newly identified busy streets where people may spend 1 hour or more close to traffic.

3.3 Roads with a High Flow of Buses and/or HGVs.

Coventry City Council confirms that there are no new/newly identified roads with high flows of buses/HDVs.

3.4 Junctions

Coventry City Council confirms that there are no new/newly identified busy junctions/busy roads.

3.5 New Roads Constructed or Proposed Since the Last Round of Review and Assessment

Coventry City Council confirms that there are no new/proposed roads.

3.6 Roads with Significantly Changed Traffic Flows

Coventry City Council confirms that there are no new/newly identified roads with significantly changed traffic flows.

3.7 Bus and Coach Stations

Coventry City Council has assessed potential NO_2 and PM_{10} emissions at bus stations located within the city during previous rounds of review and assessment. There is no relevant exposure with reference to the 1-hour exposure criteria within 10 metres of Pool Meadow bus station, therefore there is no need to proceed further with the assessment of bus stations in Coventry.

Coventry City Council confirms that there are no relevant bus stations in the Local Authority area.

4 Other Transport Sources

4.1 Airports

Coventry Airport stopped running passenger flights in December 2009, but continues to operate cargo services. The airport is located within Warwick District Council.

Coventry City Council confirms that there are no airports in the Local Authority area.

4.2 Railways (Diesel and Steam Trains)

4.2.1 Stationary Trains

Coventry City Council confirms that there are no locations where diesel or steam trains are regularly stationary for periods of 15 minutes or more, with potential for relevant exposure within 15m.

4.2.2 Moving Trains

Coventry City Council confirms that there are no locations with a large number of movements of diesel locomotives, and potential long-term relevant exposure within 30m.

4.3 **Ports (Shipping)**

Coventry City Council confirms that there are no ports or shipping that meet the specified criteria within the Local Authority area.

5 Industrial Sources

5.1 Industrial Installations

5.1.1 New or Proposed Installations for which an Air Quality Assessment has been Carried Out

Coventry City Council has approved some new installations since the last USA. They are as follows:

- 2 metal and plastic coating
- 1 non-ferrous foundry
- 1 dry cleaner
- 5 waste oil burners

All of the above processes are regulated under the Environmental Permitting Regulations. These processes have limited NO_x output, especially in comparison to the NO_x contribution from road traffic, and therefore it is not considered necessary to assess these in more detail.

Coventry City Council has assessed new/proposed industrial installations, and concluded that it will not be necessary to proceed to a Detailed Assessment.

5.1.2 Existing Installations where Emissions have Increased Substantially or New Relevant Exposure has been Introduced

Coventry City Council confirms that there are no industrial installations with substantially increased emissions or new relevant exposure in their vicinity within its area or nearby in a neighbouring authority.

5.1.3 New or Significantly Changed Installations with No Previous Air Quality Assessment

Coventry City Council has assessed new/proposed industrial installations, and concluded that it will not be necessary to proceed to a Detailed Assessment.

5.2 Major Fuel (Petrol) Storage Depots

There are no major fuel (petrol) storage depots within the Local Authority area.

5.3 Petrol Stations

Coventry City Council confirms that there are no petrol stations meeting the specified criteria.

5.4 **Poultry Farms**

Coventry City Council confirms that there are no poultry farms meeting the specified criteria.

6 Commercial and Domestic Sources

6.1 **Biomass Combustion – Individual Installations**

There has been one new biomass combustion installation since the last updating and screening assessment, at the following location:

• Coventry University, Faculty of Engineering and Computing

This biomass installation has been assessed by Coventry City Council at the planning stage. The applicant submitted detailed information on proposed installation, which we used to assess the stack height and any air quality impacts in line with DEFRA and EPUK guidance. The above installations have been assessed in this way and have been deemed to have negligible impact on air quality.

Coventry City Council has assessed the biomass combustion plant, and concluded that it will not be necessary to proceed to a Detailed Assessment.

6.2 Biomass Combustion – Combined Impacts

Coventry City Council has assessed the biomass combustion plant, and concluded that it will not be necessary to proceed to a Detailed Assessment.

6.3 Domestic Solid-Fuel Burning

Coventry City Council confirms that there are no areas of significant domestic fuel use in the Local Authority area.

7 Fugitive or Uncontrolled Sources

Coventry City Council has considered dust emissions from a number of uncontrolled and fugitive sources that may give rise to elevated PM_{10} concentrations. Through the planning system there have been proactive controls put in place for the mitigation and control of dust from construction/demolition works.

Coventry City Council confirms that there are no potential sources of fugitive particulate matter emissions in the Local Authority area.

8 **Conclusions and Proposed Actions**

8.1 Conclusions from New Monitoring Data

The latest monitoring data has indicated continual exceedences of the annual mean objective for NO₂ at a number of diffusion tube locations across the city, as follows:

- Walsgrave Road, Ball Hill
- Foleshill Road / Longford Road
- Trinity Street and Fairfax Street
- Far Gosford Street
- Queensland Avenue and Spon End

These are all within the city-wide designated AQMA.

The majority of tube results show a slight decrease in NO₂ concentrations since the peak values of 2012, although not sufficient to consider revocation of the AQMA.

There is currently no AQMA declaration for PM_{10} . Coventry City Council has carried out continuous monitoring of PM_{10} at three locations, and this has shown that the annual mean objective is not currently being exceeded. It is considered unlikely that the objective will be exceeded at these locations.

8.2 Conclusions from Assessment of Sources

Since the last round of Review and Assessment, there have been no new industrial sources or introduction of new exposure to industrial sources. All existing sources have not undergone any changes which may lead to increased pollutant emissions. One new biomass installation has been identified and calculations show that the emissions are below that required for a detailed assessment for both NO₂ and PM₁₀.

8.3 **Proposed Actions**

This Updating and Screening Assessment has not identified the need to proceed to a Detailed Assessment for any pollutant.

The assessment has identified that continued use of automatic monitoring sites is not necessary. The existing diffusion tube monitoring network will be annually reviewed to consider potential developing 'hotspots' or in preparation for larger infrastructure schemes.

No changes are required to the existing City wide AQMA.

Our next course of action will be submission of the 2016 Progress Report.

9 References

National Diffusion Tube Bias Adjustment Factor Spreadsheet, from <u>http://laqm.defra.gov.uk/bias-adjustment-factors/national-bias.html</u>, version 03/15

Summary of Laboratory Performance in WASP NO2 Proficiency Testing Scheme for Rounds 121-124 from <u>http://laqm.defra.gov.uk/diffusion-tubes/qa-qc-</u> <u>framework.html</u>., March 2015

Local Air Quality Management Technical Guidance LAQM.TG(09), https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/69334/ pb13081-tech-guidance-laqm-tg-09-090218.pdf , February 2009.

Appendices

Appendix A: QA/QC Data

Diffusion Tube Bias Adjustment Factors

The bias adjustment for 2014 was taken from the National Diffusion Tube Bias Adjustment Factor spreadsheet, as issues with automatic monitoring data made it impossible to obtain a robust local bias adjustment factor. There were 16 studies that contributed and therefore the adjustment factor of 0.91 is thought to be representative. Figure 9.1 Figure 9.1 A screenshot of the National Diffusion Tube Bias Adjustment Factor spreadsheet, showing the laboratory, preparation method and factor used.

National Diffusion Tube	e Bias Adju	istment	Fa	ctor Spreadsheet			Spreadsh	eet Ver	sion Numt	oer: 03/15		
Follow the steps below in the correct ord	ler to show the resi	ults of releva	nt co-l	ocation studies				This	spreadshe	et will be		
Data only apply to tubes exposed monthly a Whenever presenting adjusted data, you sh This spreadhseet will be updated every few	nd are not suitable f ould state the adjus v months: the factor	or correcting i tment factor u s may therefo	individi sed ar re be s	ual short-term monitoring periods id the version of the spreadsheet subject to change. This should not disco	ourage thei	r immediate use		updat	ed at the er 2015	nd of June		
The LAQM Helpdesk is operated on behalf of D contract partners AECOM and the National Ph)efra and the Devolve ysical Laboratory.	d Administratio	ins by E	Bureau Veritas, in conjunction with	Spreadshe compiled b	eet maintained I by Air Quality C	by the National onsultants Ltd.	Physica	Laboratory	/. Original		
Step 1:	Step 2:	Step 3:	а С		5	step 4:						
Select the Laboratory that Analyses Your Tubes from the Drop-Down List	Select a Preparation Method from the Drone Down List If a proparation method in not rhoun, up have no data	Select a Year from the Drop-Down Lier If a year in not those up how col	Where there is only one study for a chosen combination, you should use the adjustment factor shown om the Down or the final column. If you have your own co-location study then see footnote ⁴ . If uncertain what to do then contact the Local Air Quality									
Ir a laboratory unatzhoun, us have no data for the laboratory. For the motod at the data at a Management Helpdesk at LAOMHelpdesk@uk.bureauveritas.com or 0800 0327953												
Analysed By ¹	Method Towns of ratio	Year ⁶	Site Typ e	Local Authority	Length of Study (months)	Diffusion Tube Mean Conc. (Dm) (µg/m³)	Automatic Monitor Mean Conc. (Cm) (uq/m ³)	Bias (B)	Tube Precisio n ⁶	Bias Adjustme nt Factor (A) (Cm/Dm)		
Gradko	20% TEA in water	2014	UC	Belfast City Council	11	33	32	5.6%	G	0.95		
Gradko	20% TEA in water	2014	R	Borough Council of King's Lynn & West Norf	12	29	21	37.7%	G	0.73		
Gradko	20% TEA in water	2014	R	Brighton & Hove City Council	12	55	48	15.2%	G	0.87		
Gradko	20% TEA in water	2014	В	Brighton & Hove City Council	11	60	57	6.2%	G	0.94		
Gradko	20% TEA in water	2014	В	Cheshire West and Chester	11	40	40	-1.0%	G	1.01		
Gradko	20% TEA in water	2014	R	Dudley MBC	12	36	31	18.1%	G	0.85		
Gradko	20% TEA in water	2014	UB	Dudley MBC	12	26	23	11.2%	G	0.90		
Gradko	20% TEA in water	2014	В	Dudley MBC	12	41	35	15.2%	G	0.87		
Gradko	20% TEA in water	2014	В	Dudley MBC	12	52	60	-12.6%	G	1.14		
Gradko	20% TEA in water	2014	R	Gateshead Council	10	35	32	10.8%	G	0.90		
Gradko	20% TEA in water	2014	B	Gateshead Council	12	36	36	-0.1%	G	1.00		
Gradko	20% TEA in water	2014	В	Gateshead Council	12	34	32	6.4%	G	0.94		
Gradko	20% TEA in water	2014	UB	Luton Borough Council	9	36	37	-4.0%	G	1.04		
Gradko	20% TEA in water	2014	KS	Marylebone Road Intercomparison	12	115	80	42.8%	G	0.70		
Gradko	20% TEA in water	2014	R	Monmouthshire County Council	10	42	38	10.1%	G	0.91		
Gradko	20% TEA in water	2014	R	NOTTINGHAM CITY COUNCIL	12	44	39	14.9%	G	0.87		
Gradko	20% TEA in water	2014	a noroki s	Overall Factor ³ (16 studies)				1	Jse	0.91		

QA/QC of Automatic Monitoring

Each NO_x analyser is operated according to the manufacturers' instructions. Coventry City Council personnel carry out calibration every two weeks. Certified Calibration Gas is supplied by BOC and this is used to obtain a span value for each analyser during the calibration. The data is collected and scaled, and any instrumental drift is corrected during data processing. The filter is changed after every calibration. Engineers from TRL service the analysers at six monthly intervals.

A visual inspection of the TEOM analyser is carried out fortnightly, and the filter changed as required during routine site visits.

All site visits are documented to ensure any problems are recorded and any works noted. All calibrations are recorded.

QA/QC of Diffusion Tube Monitoring

The test laboratory currently used by Coventry City Council is Gradko International Ltd. Gradko participates in the Workplace Analysis for proficiency (WASP) scheme managed by the Health and Safety Laboratory.

For the period April 2013 to February 2015 Gradko laboratory has had results which were determined to be 100% satisfactory and so has a good standard of performance with regard to WASP performance criteria.

Site Reference	Jan	Feb	March	April	Мау	June	July	August	Sept	Oct	Nov	Dec	Annual Mean NO2 (raw)	DC %
CC01/1*N	24.60	52.02	44.44	41.66		39.52	38.44	43.35	44.30	45.77	38.53	57.94	42.78	92
HR1	65.78	72.63	66.76	64.97		65.11	62.21			100.75	56.17	69.64	69.34	75
BH1	43.64	43.92	48.79	46.03		39.78	40.57	40.78	55.90	42.05		55.41	45.69	83
BH2a	51.65	47.11	56.94	52.74			54.68	52.23	65.83	49.33	42.59	63.83	53.69	83
BH4	65.64	56.62	56.01	57.66		58.66	54.09	47.39	70.52	54.95	57.23	66.25	58.64	92
BH10	38.04	39.79	50.70	52.85		51.51	50.23	45.14	63.54	49.18	48.75	52.67	49.31	92
BH13	48.20	44.11	42.08	40.80		31.74	32.34	36.17	43.00	45.74	36.56	51.72	41.13	92
BH14	45.63	41.32	54.85	46.90		46.34	42.80	45.51	56.36	48.36	44.09	61.01	48.47	92
BH15i	49.08	44.87		57.27		62.06		50.01	68.73	50.00	54.54	65.54	55.79	75
SW1	35.08	34.73	37.72	30.96		27.42	27.90	27.09	32.95	35.90	38.60	40.48	33.53	92
SW2	47.06	43.01		36.12		18.91	33.79	31.57	44.05	35.37	41.18	47.98	37.91	83
HS3	58.15	47.02	59.53	52.27		49.12	48.23	47.51	59.96	51.67	47.30	62.64	53.04	92
TS3	64.62	52.42	65.67	55.98		54.20	55.32		66.86	50.27	57.21	58.18	58.07	83
GF1	39.47		44.75	41.43		38.33	36.82	33.03	47.90	41.36	44.34	47.96	41.54	83
QV1	46.82		46.44	43.40		42.58	42.06	39.34	53.76	49.16	43.34	62.89	46.98	83

Appendix B: Monthly NO₂ Diffusion Tube Results 2014

Site Reference	Jan	Feb	March	April	Мау	June	July	August	Sept	Oct	Nov	Dec	Annual Mean NO2 (raw)	DC %
FS1	56.69	53.40	54.99	52.41		53.41	52.50	47.66	72.56	57.83	58.94	58.10	56.23	92
CS1	50.63	39.25	57.38	51.86		52.37	54.41	58.19	62.71	51.14	57.85	62.59	54.40	92
CS2	49.54	47.35	52.43	47.61		54.60	52.56	38.29	65.64	39.03	48.33	47.25	49.33	92
GS1	41.74	33.15	48.17	52.18		44.85	46.43	47.63	61.46	58.35	45.63	57.78	48.85	92
LON12	49.47	47.69	49.60	46.16		46.05					Lamppost moved		47.79	42
JL1			37.61	31.74		30.31	31.32			38.81	36.50	38.38	34.95	58
SE1	54.39	51.75	54.48	47.96		45.42	40.52	40.42	51.02	52.64	58.06	51.51	49.83	92
SE3	46.82	51.43	47.78	43.11		42.95	40.35	36.62	50.54	44.35	44.40	52.33	45.52	92
QAV01	53.87	46.84	54.79	51.19		49.88	47.94	42.16	66.93		45.07	57.99	51.67	83
QAV8	41.44		39.63	36.93		31.24	27.05	28.67	36.22	35.81		41.67	35.41	75
QAV12	50.91	45.90	47.25	38.21		38.33	35.55	31.85	46.51	46.07			42.29	75
QAV13	49.70	46.81	50.12	46.10		44.31	37.93	41.70	52.90	49.79	53.81	49.91	47.55	92
R1	35.76	34.31	39.54			35.79	33.25	29.14	43.63	34.28	38.77	45.96	37.05	83
R4	42.12	42.55	46.53	41.21		42.32	42.91	37.08	47.48	48.27	43.40	45.38	43.57	92
R5	45.44	43.27	47.89	54.66		55.74		42.09	60.86	48.73	47.48	46.86	49.30	83
R6	56.69	60.00	58.70	57.20		56.40	56.29				61.93	63.31	58.82	67
R8	39.78	40.92	45.31	44.70		45.70	46.07	35.66	54.70	39.29	34.95	42.94	42.73	92

Site Reference	Jan	Feb	March	April	Мау	June	July	August	Sept	Oct	Nov	Dec	Annual Mean NO2 (raw)	DC %
R9	57.95	58.01		50.85		46.67	40.08	39.37	51.41	61.73	54.62	52.18	51.29	83
LR1	44.99	44.75	51.17	48.77		48.34	44.19	41.03	53.16	49.96	51.33	54.00	48.34	92
LR2	47.50	46.63	52.95	51.67		49.98	45.65	40.00	63.06	47.18	35.66	44.06	47.67	92
LR3	49.01	43.66	45.49	41.92		45.21	45.54	43.38	53.45	54.23	61.46	55.29	48.97	92
BRN2	49.27	47.75	34.13	44.41		41.05	39.26	36.10	45.14	41.46	46.95	47.46	43.00	92
BA1	48.51	49.48	50.55	49.23							42.71	44.40	47.48	50
SS1	43.39	38.19	45.43	40.00		24.36	40.27	30.91	52.30	40.77	48.64		40.43	83
SS2	48.83	44.11	46.20	38.35		38.45	36.91	30.81	48.43	42.31	41.95	44.63	41.91	92
SS3	45.02	41.45	45.78	39.14		39.20	40.02	34.71	50.61	44.47	44.19	48.14	42.98	92
SS5	42.69	58.80	61.25	53.94		54.17	52.91	45.35	64.32	49.33	48.58	63.79	54.10	92
EH1	35.82	37.35	40.04	37.23			37.99	33.75	44.43	34.74	39.07	51.88	39.23	83
BELL1	59.10	50.91	47.22	40.43		43.53	40.58	41.16	49.13	48.71	48.58	16.16	44.14	92
BELL2	46.74	45.56	40.83	39.14		40.18	37.40	33.85	43.17	48.55	51.33	44.02	42.80	92
FGS1	42.39	41.56	51.58	45.27		42.23	39.94	41.96	56.12	41.15	48.47	53.01	45.79	92
FGS2	40.52	39.22	46.08	41.73		41.09	38.60	36.97	52.56	42.50	43.89	46.82	42.72	92
FGS3	41.23	46.19	49.12	46.63		44.55	41.02	43.31	58.36	43.51		54.92	46.88	83
GR1	37.68	34.70	44.73	38.28		37.32	36.40	34.45	46.61	39.36	42.87	48.21	40.06	92

Site Reference	Jan	Feb	March	April	Мау	June	July	August	Sept	Oct	Nov	Dec	Annual Mean NO2 (raw)	DC %
Grange2				40.80		37.40	36.15	45.43	42.53			59.03	43.56	50
Grange3				41.33		38.68	34.68	46.54	41.93		45.85	58.02	43.86	58
AGR1	51.71	48.11	37.96	30.93		27.70	26.91	41.90	25.55	41.70	38.25	49.90	38.24	92
AGR2		0.41	34.94	38.14		30.80	28.71			42.27	43.12	48.78	33.40	67