

ISO/IEC 17025 Accredited Legal Entity, UKAS Accredited Testing Laboratory No. 4279 Exova (UK) Ltd trading as Exova Catalyst & Exova Catalyst Ireland Unit C5, Emery Court, The Embankment Business Park, Stockport, SK4 3GL

Exova Catalyst, Unit 19, Bordesley Green Trading Estate, Bordesley Green Road, Birmingham, B8 1BZ T: 0800 328 1821 (or + 44 161 432 3286 from overseas) E: toby.campbell@exova.com Your Exova Catalyst Contact: Toby Campbell (07825 130 074)

Stack Emissions Testing Report Commissioned by

Meggitt Aircraft Braking Systems

Installation Name & Address

Meggitt Aircraft Braking Systems Holkbrook Lane Coventry West Midlands CV6 4AA

PPC Permit: 156

Stack Reference Plating Shop Main Stack

Dates of the Monitoring Campaign 15th December 2016

> Job Reference Number CAT-3073

	Report Written by				
	David Burns				
	Team Leader				
MCERTS Level 2					
	MM05 579				
	TE1 TE2 TE3 TE4				

Report Approved by Matthew Pendlebury Team Leader MCERTS Level 2 MM 04 535 TE1 TE2 TE3 TE4

> Report Date 17th January 2017

> > Version 1

Signature of Report Approver

CONTENTS

TITLE PAGE

CONTENTS	
Summary of Sampling Deviations	2
EXECUTIVE SUMMARY	
Monitoring Objectives	3
Monitoring Results	4
Monitoring Dates & Times	5
Process Details	6
Monitoring & Analytical Methods	7
Sampling Location	8
Plant Photos / Sample Points	9

APPENDIX 1 - Monitoring Personnel & List of Equipment

APPENDIX 2 - Raw Data, Sampling Equations & Charts

Opinions and interpretations expressed herein are outside the scope of Exova Catalyst's ISO 17025 accreditation.

This test report shall not be reproduced, except in full, without the written approval of Exova Catalyst.

(Page 1 of 7)

MONITORING OBJECTIVES

Meggitt Aircraft Braking Systems, Coventry Plating Shop Main Stack 15th December 2016

Overall Aim of the Monitoring Campaign

Exova Catalyst were commissioned by Meggitt Aircraft Braking Systems to carry out stack emissions testing on the Plating Shop Main Stack at Coventry.

The aim of the monitoring campaign was to demonstrate compliance with a set of emission limit values (ELVs) as specified in the Site's Permit.

Special Requirements

There were no special requirements.

Target Parameters

Total Oxides of Nitrogen, Hydrogen Fluoride

(Page 2 of 7)

MONITORING RESULTS

Meggitt Aircraft Braking Systems, Coventry Plating Shop Main Stack 15th December 2016

where MU = Measurement Uncertainty associated with the Result

		Concentrat	ion			Mass Emission			
Parameter	Units	Result	MU	Limit		Units	Result	MU	Limit
			+/-					+/-	
Total Oxides of Nitrogen	mg/m³	51.8	5.5	200		g/hr	2690	310	-
Hydrogen Fluoride	mg/m³	< 0.03	0.002	5		g/hr	< 1.5	0.12	-
Stack Gas Temperature	°C	21.1		_	-				
Water Vapour	% v/v	1.4	0.37						
Stack Gas Velocity	m/s	8.9	0.09						
Volumetric Flow Rate (ACTUAL)	m³/hr	56504	2620						
Volumetric Flow Rate (REF) 1	m³/hr	51905	2407						

NOTE: VOLUMETRIC FLOW RATE & VELOCITY DATA TAKEN FROM THE PRELIMINARY VELOCITY TRAVERSE.

¹ Reference Conditions (REF) are: 273K, 101.3kPa, without correction for water vapour content.

(Page 3 of 7)

MONITORING DATE(S) & TIMES

Meggitt Aircraft Braking Systems, Coventry Plating Shop Main Stack 15th December 2016

Parameter		Units	Concentration	Units	Mass Emission	Sampling	Sampling	Duration
						Date(s)	Times	mins
Total Oxides of Nitrogen	R1	mg/m³	51.8	g/hr	2690	15/12/2016	12:01 - 13:01	60
Hydrogen Fluoride	R1	mg/m³	< 0.03	g/hr	< 1.5	15/12/2016	10:48 - 11:48	60
Velocity & Volumetric Flow Rate	R1					15/12/2016	10:00 - 10:36	

All results are expressed at the respective reference conditions.

(Page 4 of 7)

PROCESS DETAILS

Meggitt Aircraft Braking Systems, Coventry Plating Shop Main Stack 15th December 2016

Standard Operating Conditions

Parameter	Value					
Process Status	Normal Operation					
Capacity (of 100%) and Tonnes / Hour	Standard Operating Capacity					
Continuous or Batch Process	Continuous					
Feedstock (if applicable)	Metal components/ HF / Acid Dipping					
Abatement System	Wet Scrubber					
Abatement System Running Status	On					
Fuel	N/A					
Plume Appearance	None visible					

(Page 5 of 7)

MONITORING & ANALYTICAL METHODS

Meggitt Aircraft Braking Systems, Coventry Plating Shop Main Stack 15th December 2016

		Monitoring				Analysis				
Parameter	Standard	Technical Procedure	ISO 17025 Testing	Testing Lab	Analytical Procedure	Analytical Technique	ISO 17025 Analysis	Lab	MCERTS Testing	LOD (Average)
Total Oxides of Nitrogen	US EPA M7D	CAT-TP-35	Yes	CAT	C27	IC	Yes	RPS	Yes	6.4 mg/m ³
Hydrogen Fluoride	ISO 15713	CAT-TP-10	Yes	CAT	Ion Chromatography	IC	Yes	CAT	Yes	0.03 mg/m³
Velocity & Vol. Flow Rate	EN 16911-1 (MID)	CAT-TP-41	Yes	CAT	Pitot T	ube and Thermoo	ouple		Yes	1.2 m/s

ANALYSIS LABORATORIES

(with short name reference as appears in the table above)

Exova Catalyst (CAT)	ISO 17025 Accreditation Number: 4279
RPS Laboratories Ltd (RPS)	ISO 17025 Accreditation Number: 0605

SUMMARY OF SAMPLING DEVIATIONS

Parameter	Run	Deviation
Water Vapour (concurrent with Total Oxides of Nitrogen)	1	The measurement uncertainty for water vapour was greater than 20%. This was due to the low level of water vapour which was found to be present in the stack.

(Page 6 of 7)

SUITABILITY OF SAMPLING LOCATION

Duct Characteristics

Location of Sampling Platform

Parameter	Units	Value
Туре	-	Circular
Depth	m	1.50
Width	m	-
Area	m²	1.77
Port Depth	cm	9
Orientation of Duct	-	Vertical
Sample Port Size	-	4" BSP

General Platform Information	Value
Permanent / Temporary Platform	Permanent
Inside / Outside	Outside

Platform Details

EA Technical Guidance Note M1 / EN 15259 Platform Requirements	Value
Sufficient working area to manipulate probe and operate the measuring instruments	Yes
Platform has 2 levels of handrails (approx. 0.5m & 1.0m high)	Yes
Platform has vertical base boards (approx. 0.25m high)	Yes
Platform has chains / self closing gates at top of ladders	Yes
There are no obstructions present which hamper insertion of sampling equipment	Yes
Safe Access Available	Yes
Easy Access Available	Yes

Sampling Location / Platform Improvement Recommendations

The sampling location meets all the requirements specified in EA Guidance Note M1 and EN 15259, and therefore there are no improvement recommendations.

EN 15259 Homogeneity Test Requirements

There is no requirement to perform a EN 15259 Homogeneity Test on this Stack.

Sampling Plane Validation Criteria (from EN 15259)

Criteria in EN 15259	Units	Traverse 1					Required	Compliant
Lowest Differential Pressure	Pa	21.0					> 5 Pa	Yes
Mean Velocity	m/s	8.88					-	-
Lowest Gas Velocity	m/s	4.96					-	-
Highest Gas Velocity	m/s	12.93					-	-
Ratio of Above	:1	2.61					< 3 : 1	Yes
Maximum Angle of Swirl	0	NM	NM	NM	NM	NM	NM	NM
No Local Negative Flow	-	Yes		<u>.</u>	-	•	-	Yes

Where NM = Not Measured as no Isokinetic sampling was performed.

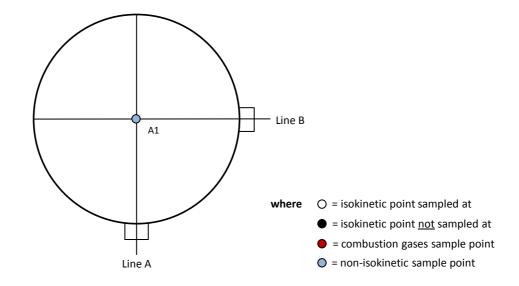
Executive Summary (Page 7 of 7)

PLANT PHOTOS

<u>Photo 1</u>

<u>Photo 2</u>

<u>Photo 3</u>



<u>Photo 4</u>

SAMPLE POINTS

APPENDICES

APPENDIX CONTENTS

APPENDIX 1 - Stack Emissions Monitoring Personnel, List of Equipment & Methods and Technical Procedures Used

APPENDIX 2 - Summaries, Calculations, Raw Data and Charts

STACK EMISSIONS MONITORING PERSONNEL

Position	Name	MCERTS Accreditation	MCERTS Number	Technical Endorsements	
Team Leader	David Burns	MCERTS Level 2	MM05 579	TE1 TE2 TE3 TE4	
Trainee	Aaron Nagha	MCERTS Trainee	MM16 1392	None	

LIST OF EQUIPMENT

Extractive Sampling			
Equipment Type	Equipment I.D.		
Control Box DGM (1)	-		
Control Box DGM (2)	-		
Box Thermocouples (1)	-		
Box Thermocouples (2)	-		
Umbilical (1)	-		
Umbilical (2)	-		
Oven Box (1)	-		
Oven Box (2)	-		
Heated Probe (1)	-		
Heated Probe (2)	CAT 5.130		
Heated Probe (3)	-		
S-Pitot (1)	CAT 21P.97		
S-Pitot (2)	CAT 21S.56		
L-Pitot	-		
Site Balance	CAT 17.38		
500g / 1Kg Check Weights	CAT 17.38		
Last Impinger Arm	-		
Callipers	-		
Tubes Kit Thermocouple	-		

Instrumental Analysers			
Equipment Type	Equipment I.D.		
Horiba PG-350E	-		
Horiba PG-250	-		
Servomex 4900	-		
Eco Physics CLD 822Mh	-		
ABB AO2020-URAS26	-		
Servomex 5200MP	-		
Ankersmid APS 313	CAT 4.848		
Gasmet DX4000	-		
Gasmet Sampling System	-		
Bernath 3006 FID	-		
M&C PSS	-		
Mass Flow Controller (1)	-		
Mass Flow Controller (2)	-		
Mass View (1)	CAT 25.61		
Mass View (2)	CAT 25.62		
Hioki 5043 (V)	-		
Easylogger EN-EL-12 Bit	-		
Bioaerosols Temperature Logger	-		
Electronic Refrigerator			

Miscellaneous Items				
Equipment Type	Equipment I.D.			
Digital Manometer (1)	CAT 3.143			
Digital Manometer (2)	CAT 3.145			
Digital Temperature Meter	-			
Stopwatch	CAT 14.86			
Barometer	CAT 13.41			
Stack Thermocouple (1)	-			
Stack Thermocouple (2)	CAT 4.849			
Stack Thermocouple (3)	-			
1m Heated Line (1)	-			
1m Heated Line (2)	-			
1m Heated Line (3)	-			
5m Heated Line (1)	-			
15m Heated Line (1)	-			
20m Heated Line (1)	CAT 20.119			
20m Heated Line (2)	-			
Dual Channel Heater Controller	CAT 3.002			
Single Channel Heater Controller	CAT 20.119			
Laboratory Balance				
Tape Measure	CAT 16.49			

METHODS & TECHNICAL PROCEDURES USED

Parameter	Standard	Technical Procedure	
Total Oxides of Nitrogen	US EPA M7D	CAT-TP-35	
Hydrogen Fluoride	ISO 15713	CAT-TP-10	
Velocity & Vol. Flow Rate	EN 16911-1 (MID)	CAT-TP-41	

PRELIMINARY STACK SURVEY: CALCULATIONS

General Stack Details

Stack Details (from Traverse)	Units	Value
Stack Diameter / Depth, D	m	1.50
Stack Width, W	m	-
Stack Area, A	m²	1.77
Average Stack Gas Temperature, T _a	°C	21.1
Average Stack Gas Pressure	Pa	72.3
Average Stack Static Pressure, P _{static}	kPa	0.047
Average Barometric Pressure, P _b	kPa	100.2
Average Pitot Tube Calibration Coefficient, C _p	-	0.83

Stack Gas Composition & Molecular Weights

Component		Conc ppm	Conc Dry % v/v	Conc Wet % v/v	Volume Fraction r	Molar Mass M	Density kg/m³ p	Conc kg/m³ p _i
CO₂	(Estimated)	-	0.06	0.06	0.0006	44.01	1.9635	0.0012
02	(Estimated)	-	20.80	20.51	0.2080	32.00	1.4277	0.2970
N ₂		-	79.14	78.03	0.7914	28.01	1.2498	0.9891
Moisture (H₂O)		-	-	1.40	0.0140	18.02	0.8037	0.0113

Where: p = M / 22.41

 $\mathbf{p}_i = \mathbf{r} \mathbf{x} \mathbf{p}$

Calculation of Stack Gas Densities

Determinand	Units	Result
Dry Density (STP), P _{STD}	kg/m³	1.287
Wet Density (STP), P _{STW}	kg/m³	1.280
Dry Density (Actual), P _{Actual}	kg/m³	1.182
Average Wet Density (Actual), P ActualW	kg/m³	1.176

Where: P_{STD} = sum of component concentrations, kg/m³ (not including water vapour) P_{STW} = sum of all wet concentrations / 100 x density, kg/m³ (including water vapour) P_{Actual} = P_{STD} x (T_{STP} / (P_{STP})) x ((P_{static} + P_b) / T_a) P_{Actual} = P_{STD} x (T_{STP} / (P_{STP})) x ((P_{static} + P_b) / T_a)

 $P_{ActualW}$ (at each sampling point) = $P_{STW} \times (T_s / P_s) \times (P_a / T_a)$

Calculation of Stack Gas Volumetric Flowrate, Q

Duct gas flow conditions	Units	Units Actual	
Temperature	°C	21.1	0.00
Total Pressure	kPa	100.2	101.3
Moisture	%	1.39	1.39

Gas Volumetric Flowrate (from Traverse)	Units	Result
Gas Volumetric Flowrate (Actual)	m³/hr	56504
Gas Volumetric Flowrate (STP, Wet)	m³/hr	51905
Gas Volumetric Flowrate (STP, Dry)	m³/hr	51184
Gas Volumetric Flowrate REF ¹	m³/hr	51905

PRELIMINARY STACK SURVEY: VELOCITY TRAVERSE TO EN 16911-1 (MID)

(1 of 1)

Parameter		Units	Value
Date of Survey		-	15/12/2016
Time of Survey		-	10:00 - 10:36
Atmospheric Pres	sure	kPa	100.2
Average Stack Sta	tic Pressure	Ра	47
Result of Pitot Sta	gnation Test	-	Pass
Are Water Drople	ts Present?	-	No
Device Used	S-Type Pito	ot with KI	MO MP 200 (500Pa)

Parameter	Units	Value
Initial Pitot Leak Check	-	Pass
Final Pitot Leak Check	-	Pass
Orientation of Duct	-	Vertical
Pitot Tube, C _p	-	0.83
Number of Lines Available	-	2
Number of Lines Used	-	2

			9	Sampling Line A	1			9	Sampling Line B		
Traverse	Depth	ΔΡ	Temp	Wet Density	Velocity	Swirl	ΔΡ	Temp	Wet Density	Velocity	Swirl
Point	m	Ра	°C	kg/m³	m/s	0	Ра	°C	kg/m³	m/s	0
STATIC (Un	its: Pa)	43.0					51.0				
Mean		61.8	21.1	1.176	8.05		82.9	21.1	1.176	9.71	
1	0.05	114.0	21.1	1.176	11.55		134.0	21.1	1.176	12.52	
2	0.16	143.0	21.1	1.176	12.93		115.0	21.1	1.176	11.60	
3	0.29	73.0	21.1	1.176	9.24		94.0	21.1	1.176	10.48	
4	0.48	47.0	21.1	1.176	7.41		63.0	21.1	1.176	8.58	
5	1.02	36.0	21.1	1.176	6.49		68.0	21.1	1.176	8.92	
6	1.21	29.0	21.1	1.176	5.82		74.0	21.1	1.176	9.30	
7	1.34	31.0	21.1	1.176	6.02		72.0	21.1	1.176	9.18	
8	1.45	21.0	21.1	1.176	4.96		43.0	21.1	1.176	7.09	

PRELIMINARY STACK SURVEY: VELOCITY TRAVERSE TO EN 16911-1 (MID) - MEASUREMENT UNCERTAINTY

(1 of 1)

Performance characteristics (Uncertainty Components)	Uncertainty	Value	Units
Standard Uncertainty on the coefficient of the Pitot Tube	u(k)	0.005	-
Standard Uncertainty associated with the mean local dynamic pressures	u(<u>Δpi</u>)	1.302	Ра
- Resolution	u(res)	0.00087	
- Calibration	u(cal)	0.544	
- Drift	u(drift)	0.083	
- Lack of Fit	u(fit)	0.066	
- Overall corrections to dynamic measurements	u(Cf)	0.694	
Standard uncertainty associated with the molar mass of the gas	u(M)	0.00003	-
- φO ₂ ,w	-	20.509	
- φCO ₂ ,w	-	0.059	
- Oxygen, dry	u(φO₂,d)	0.637	
- Carbon Dioxide, dry	u(φCO₂,d)	0.002	
- Water Vapour	u(φH₂O)	0.071	
- Oxygen, wet	u(φO₂,w)	0.628	
- Carbon Dioxide, wet	u(φCO₂,w)	0.002	
Standard uncertainty associated with the stack temperature	u(Tc)	1.501	К
Standard uncertainty associated with the absolute pressure in the duct	u(pc)	175.694	Ра
- Atmospheric Pressure	u(patm)	175.692	
- Static Pressure	u(<u>pstat</u>)	0.920	
Standard uncertainty associated with the density in the duct	u(ρ)	0.00635	-
Standard uncertainty associated with the local velocities	u(vi)	0.102	Ра
Standard uncertainty associated with the mean velocity	u(<u>v</u>)	0.045	m/s
Standard uncertainty associated with the mean velocity (95% Confidence)	Uc(v)	0.089	m/s
Standard uncertainty associated with the mean velocity (95% Confidence), relative	Uc,rel(v)	1.00	%
Standard uncertainty associated with the volume flow rate (95% Confidence)	Uc(qV,w)	2619.8	m³/hr
$-u^{2}(a)/a^{2}$	-	0.00053	
$-u^2(qV,w)/q^2V,w$	-	0.00056	
- u²(qV,w)	-	1786521	
- u(qV,w)	-	1336.6	
Standard uncertainty associated with the volume flow rate (95% Confidence), relative	Uc,rel(qV,w)	4.64	%

TOTAL OXIDES OF NITROGEN: RESULTS SUMMARY

Meggitt Aircraft Braking Systems, Coventry Plating Shop Main Stack

Sample Runs

Parameter	Units	Run 1	Mean
Concentration	mg/m³	51.8	51.8
Uncertainty	±mg/m³	5.5	5.5
Mass Emission	g/hr	2690	2690
Uncertainty	±g/hr	310	310

Parameter	Units	Run 1	Mean
Water Vapour	% v/v	1.26	1.26
Uncertainty	±% v/v	0.91	0.91

Blank Runs

Parameter	Units	Blank 1	Maximum
Concentration	mg/m³	< 3.96	< 3.96

General Sampling Information

Parameter	Value	
Standard	US EPA M7D	_
Technical Procedure	CAT-TP-35	
Name of Analytical Laboratory	RPS	_
Analytical Laboratory's Procedure	C27	
ISO 17025 Accredited Analysis?	Yes	
Date of Sample Analysis	15/12/2016	
Probe Material	Titanium	_
Filter Housing Material	Titanium	
Impinger Material	Polyethylene	
Absorption Solution	Potassium Permanganate Solution	
Positioning of Filter	Out Stack Heated Head	_
Filter Size and Material	0.1µm Glass Fibre	
Number of Sampling Lines Used	1/1	FORMAT: Number Used / Number R
Number of Sampling Points Used	1/1	FORMAT: Number Used / Number R
Sample Point I.D.'s	A1	

Required Required

Reference Conditions

Reference Conditions are: 273K, 101.3kPa, without correction for water vapour content.

TOTAL OXIDES OF NITROGEN: SAMPLING DETAILS

Sample Runs

Parameter	Units	Run 1	
Sampling Times	-	12:01 - 13:01	
Sampling Dates	-	15/12/2016	
Sampling Device	-	MFC / MV	
Duration	mins	60	
Volume Sampled (STP, Dry)	m³	0.0294	
Volume Sampled (STP, Wet)	m³	0.0297	
Volume Sampled (REF)	m³	0.0297	
Sample Flow Rate	l/min	0.49	
Laboratory Result for Front Impingers	µg/ml	2.04	
Laboratory Result for Back Impinger	µg/ml	2.00	
Volume in Front Impingers	ml	374.0	
Volume in Back Impinger	ml	389.0	
Mass in Front Impingers	μg	763.0	
Mass in Back Impinger	μg	778.0	
Total Mass Collected	μg	1541.0	
Calculated Concentration	mg/m³	51.83	
Liquid Trap Start Mass	g	2637.9	
Liquid Trap End Mass	g	2638.0	
Silica Trap Start Mass	g	734.1	
Silica Trap End Mass	g	734.3	
Total Mass Of Water Vapour	g	0.3	
Calculated Water Vapour	% v/v	1.26	

Where: MFC stands for Mass Flow Controller, MV stands for Mass View Flowmeter

Blank Runs

Parameter	Units	Blank 1
Blank Dates	-	15/12/2016
Average Volume Sampled (REF)	m³	0.0297
Laboratory Result for Impingers	μg/ml	< 0.25
Volume in Impingers	ml	470.8
Total Mass Collected	μg	< 117.7
Calculated Concentration	mg/m³	< 3.96

TOTAL OXIDES OF NITROGEN: QUALITY ASSURANCE

Sample Runs

Leak Test Results	Units	Run 1
Mean Sampling Rate	l/min	0.49
Pre-Sampling Leak Rate	l/min	0.00
Post-Sampling Leak Rate	l/min	0.00
Allowable Leak Rate	l/min	0.01
Leak Test Acceptable	-	Yes
Absorption Efficiency	Units	Run 1
Absorption Efficiency	%	49.5
Allowable Absorption Efficiency	%	N/A
Absorption Efficiency Acceptable	-	N/A
Water Droplets	Units	Run 1
Are Water Droplets Present	-	No
MU (Concurrent Water Vapour)	Units	Run 1
Measurement Uncertainty (MU)	%	72.0
Allowable MU	%	20.0
MU Acceptable	%	No
Silica Gel (Concurrent Water Vapour)	Units	Run 1
Less than 50% Faded	%	Yes
Test Conditions	Units	Run 1
Ambient Temperature Recorded?	-	Yes

Blank Runs

Leak Test Results	Units	Blank 1
Expected Sampling Rate	l/min	0.50
Pre-Sampling Leak Rate	l/min	0.00
Post-Sampling Leak Rate	l/min	0.00
Allowable Leak Rate	l/min	0.01
Leak Test Acceptable	-	Yes
Validity of Blank vs ELV	Units	Blank 1
	4.3	
Allowable Blank	mg/m³	20.0
Blank Acceptable	-	Yes

Method Deviations

Nature of Deviation		Run Number		
(x = deviation applies to the associated run, wx = deviation also applies to the concurrent water vapour run)	1			
The measurement uncertainty for water vapour was greater than 20%. This was due to the low level of water vapour which was found to be present in the stack.	wx			

TOTAL OXIDES OF NITROGEN: MEASUREMENT UNCERTAINTY CALCULATIONS

		Value			Standard uncertainty			
Measured Quantities	Symbol	Run 1			Symbol	Units	Run 1	
Sampled Volume (STP)	V _m	0.03			uV _m	m³	0.0006	
Leak	L	0.00			uL	%	-	
Laboratory Result	L _r	5.00			uLr	%	-	

		Unce	ertainty as a Percentage	
Measured Quantities	Units	Run 1		Requirement of Standard
Sampled Volume (STP)	%	2.00		≤2%
Leak	%	0.00		≤2%
Laboratory Result	%	5.00		No Requirement

		Uncertainty in Measurement Units					Sensitivity Coefficient
Measured Quantities	Symbol	Units	Run 1			Run 1	
Sampled Volume (STP)	V _m	m³	0.03		[1766	
Leak	L	mg/m³	0.00			1.00	
Laboratory Result	L _r	mg/m³	2.59			1.00	

	Uncertainty in Result			
Measured Quantities	Units	Run 1		
Sampled Volume (STP)	mg/m³	1.04		
Leak	mg/m³	0.00		
Laboratory Result	mg/m³	2.59		

	Oxygen Correction Part of MU Budget			
Measured Quantities	Units	Run 1		
O ₂ Correction Factor	-	N/A		
Stack Gas O₂ Content	% v/v	N/A		
MU for O ₂ Correction	-	N/A		
Overall MU For O ₂ Measurement	%	N/A		

Parameter	Units	Run 1	
Combined uncertainty	mg/m³	2.8	
Expanded uncertainty (95% confidence), without Oxygen Correction	mg/m³	5.5	
Expanded uncertainty (95% confidence), with Oxygen Correction	mg/m³	N/A	
Expanded uncertainty (95% confidence), estimated with Method Deviations	mg/m³	5.5	
Reported Uncertainty	mg/m³	5.5	
Expanded uncertainty (95% confidence), without Oxygen Correction	%	10.6	
Expanded uncertainty (95% confidence), with Oxygen Correction	%	N/A	
Expanded uncertainty (95% confidence), estimated with Method Deviations	%	10.6	
Reported Uncertainty	%	10.6	

HYDROGEN FLUORIDE: RESULTS SUMMARY

Meggitt Aircraft Braking Systems, Coventry Plating Shop Main Stack

Sample Runs

Parameter	Units	Run 1	Mean
Concentration	mg/m³	< 0.03	< 0.03
Uncertainty	±mg/m³	0.002	0.002
Mass Emission	g/hr	< 1.5	< 1.5
Uncertainty	±g/hr	0.12	0.12

Parameter	Units	Run 1	Mean
Water Vapour	% v/v	1.52	1.52
Uncertainty	±% v/v	0.08	0.08

Blank Runs

Parameter	Units	Blank 1	Maximum
Concentration	mg/m³	< 0.03	< 0.03

General Sampling Information

Parameter	Value	
Standard	ISO 15713	
Technical Procedure	CAT-TP-10	
Name of Analytical Laboratory	САТ	
Analytical Laboratory's Procedure	Ion Chromatography	1
ISO 17025 Accredited Analysis?	Yes	1
Date of Sample Analysis	15/12/2016	
Probe Material	Monel	
Filter Housing Material	Monel	1
Impinger Material	Polyethylene	
Absorption Solution	0.1 mol/l Sodium Hydroxide	
Positioning of Filter	In Stack	
Filter Size and Material	47mm Quartz Fibre]
Number of Sampling Lines Used	1/1	FORMAT: Number Used / Number Require
Number of Sampling Points Used	1/1	FORMAT: Number Used / Number Require
Sample Point I.D.'s	A1	

Reference Conditions

Reference Conditions are: 273K, 101.3kPa, without correction for water vapour content.

HYDROGEN FLUORIDE: SAMPLING DETAILS

Sample Runs

Parameter	Units	Run 1	
Sampling Times	-	10:48 - 11:48	
Sampling Dates	-	15/12/2016	
Sampling Device	-	MFC / MV	
Duration	mins	60	
Volume Sampled (STP, Dry)	m³	0.5907	
Volume Sampled (STP, Wet)	m³	0.5998	
Volume Sampled (REF)	m³	0.5998	
Sample Flow Rate	l/min	9.84	
Laboratory Result for Front Impingers	µg/ml	< 0.05	
Laboratory Result for Back Impinger	µg/ml	< 0.05	
Volume in Front Impingers	ml	239.5	
Volume in Back Impinger	ml	118.6	
Mass in Front Impingers	μg	< 12.0	
Mass in Back Impinger	μg	< 5.9	
Total Mass Collected	μg	< 17.9	
Calculated Concentration	mg/m³	< 0.03	
Liquid Trap Start Mass	g	1230.0	
Liquid Trap End Mass	g	1233.4	
Silica Trap Start Mass	g	1594.5	
Silica Trap End Mass	g	1598.4	
Total Mass Of Water Vapour	g	7.3	
Calculated Water Vapour	% v/v	1.52	

Where: MFC stands for Mass Flow Controller, MV stands for Mass View Flowmeter

Blank Runs

Parameter	Units	Blank 1
Blank Dates	-	15/12/2016
Average Volume Sampled (REF)	m³	0.5998
Laboratory Result for Impingers	μg/ml	< 0.05
Volume in Impingers	ml	307.9
Total Mass Collected	μg	< 15.4
Calculated Concentration	mg/m³	< 0.03

HYDROGEN FLUORIDE: QUALITY ASSURANCE

Sample Runs

Leak Test Results	Units	Run 1	
Mean Sampling Rate	l/min	9.84	
Pre-Sampling Leak Rate	l/min	0.11	
Post-Sampling Leak Rate	l/min	0.09	
Allowable Leak Rate	l/min	0.20	
Leak Test Acceptable	-	Yes	
Absorption Efficiency	Units	Run 1	
Absorption Efficiency	%	100.0	
Allowable Absorption Efficiency	%	N/A ²	
Absorption Efficiency Acceptable	-	N/A ²	
² The concentration is less than 30% of the EL	V, therefore no	assessment against a	n allowable efficiency is required.
Water Droplets	Units	Run 1	
Are Water Droplets Present	-	No	
MU (Concurrent Water Vapour)	Units	Run 1	
Measurement Uncertainty (MU)	%	5.1	
Allowable MU	%	20	
MU Acceptable	%	Yes	
Silica Gel (Concurrent Water Vapour)	Units	Run 1	
Less than 50% Faded	%	Yes	
Test Conditions	Units	Run 1	
Ambient Temperature Recorded?	-	Yes	

Blank Runs

Leak Test Results	Units	Blank 1
Expected Sampling Rate	l/min	9.00
Pre-Sampling Leak Rate	l/min	0.11
Post-Sampling Leak Rate	l/min	0.10
Allowable Leak Rate	l/min	0.18
Leak Test Acceptable	-	Yes
Validity of Blank vs ELV	Units	Blank 1
Allowable Blank	mg/m³	0.50
Blank Acceptable	-	Yes

Method Deviations

Nature of Deviation		Run Number		
(x = deviation applies to the associated run, wx = deviation also applies to the concurrent water vapour run)	1			
There are no deviations associated with the sampling employed.	wx			

HYDROGEN FLUORIDE: MEASUREMENT UNCERTAINTY CALCULATIONS

	Value			Standard uncertainty				
Measured Quantities	Symbol	Run 1		Symbol	Units	Run 1		
Sampled Volume (STP)	V _m	0.59		uV _m	m³	0.01		
Leak	L	0.91		uL	%	-		
Laboratory Result	L _r	2.65		uL _r	%	-		

		Unce	ertainty as a Percentage	
Measured Quantities	Units	Run 1		Requirement of Standard
Sampled Volume (STP)	%	2.00		≤2%
Leak	%	0.91		≤2%
Laboratory Result	%	2.65		No Requirement

	Uncertainty in Measurement Units					Sensitivity Coefficient		
Measured Quantities	Symbol	Units	Run 1			Run 1		
Sampled Volume (STP)	V _m	m³	0.59		[0.05		
Leak	L	mg/m³	0.000			1.00		
Laboratory Result	L _r	mg/m³	0.001			1.00		

	Uncertainty in Result				
Measured Quantities	Units	Run 1			
Sampled Volume (STP)	mg/m³	0.0006			
Leak	mg/m³	0.0002			
Laboratory Result	mg/m³	0.0008			

	C	orrection Part of MU Budget	
Measured Quantities	Units	Run 1	
O ₂ Correction Factor	-	N/A	
Stack Gas O₂ Content	% v/v	N/A	
MU for O ₂ Correction	-	N/A	
Overall MU For O ₂ Measurement	%	N/A	

Parameter	Units	Run 1	
Combined uncertainty	mg/m³	0.001	
Expanded uncertainty (95% confidence), without Oxygen Correction	mg/m³	0.002	
Expanded uncertainty (95% confidence), with Oxygen Correction	mg/m³	N/A	
Expanded uncertainty (95% confidence), estimated with Method Deviations	mg/m³	0.002	
Reported Uncertainty	mg/m³	0.002	
Expanded uncertainty (95% confidence), without Oxygen Correction	%	6.6	
Expanded uncertainty (95% confidence), with Oxygen Correction	%	N/A	
Expanded uncertainty (95% confidence), estimated with Method Deviations	%	6.6	
Reported Uncertainty	%	6.6	