25A Church Street, Uttoxeter, Staffordshire, ST14 8AG. Tel. 01889 568124, or 07976 646757. www.aspenenvironmental.co.uk

Mr Sandy Stewart, Steel Construction Ltd, Bodmin Road, Coventry, CV2 5DB.

Date: 30/03/2017

Ref: L.2357

Dear Sandy,

Testing at Coventry March 2017:

I am pleased to present my report on the emissions testing undertaken on your site on the 9^{th} March 2017.

If you have any queries on this report please do not hesitate to contact me

Yours sincerely, For Aspen Environmental Ltd,

Dr Geoff Buck. Director

Emissions Testing Report: Part 1, Executive Summary:

UKAS Report

Emissions Testing from two Spraybooth Stacks

Permit Number: Coventry CC

Steel Construction Ltd

Monitoring Date: 09/03/2017 Aspen Reference Number: J.1318

Monitoring of: Spraybooth Stacks at Steel Construction Ltd, Bodmin Road, Coventry, CV2 5DB.

For:

SGM Associates Ltd, 8 Woodland Way, Woburn Sands, Buckinghamshire, MK17 8QL.

by:

Aspen Environmental Ltd, 25A Church St, Uttoxeter, Staffordshire, ST14 8AG.

Report Date: 30th March 2017

Prepared for Aspen Environmental Ltd by Dr G.W.Buck (Director) MCerts Registered MM 02 001 Level 2, TE1, TE3, TE4.

19

Contents Page Number 1 - 4 Part 1 **Executive Summary** Cover Sheet 1 Contents 2 Introduction 3 **Emissions Monitoring** 3 Results 3 **Monitoring Deviations** 3 **Results Summary Table** 4 Part 2 **Supporting Information** 5 - 19 **Appendix 1** Personnel & Methodologies **Methodologies & Equipment** 6 - 8 Appendix 2 **Stack Results Calculations & Data** 9 - 13 Particulates & Isokinetics 10 Pitot Tube Data & Calculations LHS 11 Pitot Tube Data & Calculations RHS 12 Analytical Laboratory Results (RPS) 13 - 14 Site Data Sheet – Sampling 15 & 17 Site Data Sheet – Flow Measurement 16 & 18

Appendix 3 Uncertainty Calculations

Introduction

Steel Construction Ltd operate a factory manufacturing steel parts for the construction industry at their Coventry site.

Aspen Environmental Ltd (Dr G Buck & Mr J Buck) attended the site on the 9th March 2017, with Mr S Martin of SGM Associates to undertake emissions testing from two spray bays. Aspen Environmental Ltd are UKAS/MCerts accredited to perform tests to EN 13284-1 and EN 16911-1, which are the current particulate sampling, and flow rate measuring standards.

Emissions Monitoring

Aspen monitored the particulate emissions from two exhausts, one from each spraybooth in the construction shop. These two exhausts were accessed from a permanent platform erected outside the factory. For the purposes of testing, the stacks were labelled as Right Hand Side & Left Hand Side, as viewed from outside the factory. At the time spray painting was being carried out on a series of steel parts, and each exhaust was sampled isokinetically for a thirty minute period following Aspen's UKAS/MCerts accredited methodologies (Methods A1 & A5).

Results

The results are presented as a summary table overleaf:

Details of sampling, pitot flow measurements and two sheets of site data for both stacks are included in Appendix 2.

UKAS accredited filter & rinse weights are also included in Appendix 2

Uncertainty calculations for the testing are included as Appendix 3

Monitoring Deviations

Both exhausts were sampled using centre point sampling methodology.

Sampling was undertaken using 4 mm tips.

Deviations from the method are highlighted in red in the appendices. There are no other deviations.

Steel Construction Ltd, Coventry	structio	n Ltd, C	oventry					Aspen	Environn	Aspen Environmental Ltd	3 (*)
Spray Area Emissions Testing 2017	Emissions	Testing 2	017								UKAS mente 2396
Emission Point Reference	Substance to be Monitored	Emission Limit Value	Periodic Monitoring Result	Uncertainty	Units	Reference Conditions 273 K, 1013 mb	Date of Sampling	Start & End Times	Monitoring Method Reference	Monitoring Accreditation Method for use of Reference Method	Operating Status
LHS Spray Area	Particulates	90	< 1.8	± 6.1 %	mg/Nm ³	Wet Gas	09/03/2017	Wet Gas 09/03/2017 12:46 - 13:31 EN 13284-1	EN 13284-1	MCerts	Normal Running
RHS Spray Area	Particulates	50	< 2.4	± 6.1 %	mg/Nm^3	Wet Gas	09/03/2017	Wet Gas 09/03/2017 11:24 - 11:57 EN 13284-1	EN 13284-1	MCerts	Normal Running
Notes Dr G.W.Buck is personally MCerted to Level 2 with Technical Endorsements TE1 (Isokinetic Sampling), TE3 (Gases by manual techniques), & TE4 (Gases by Instrumental Methods)	sonally MCerte	d to Level 2 wit	th Technical En	dorsements TE1	l (Isokinetic Sa	mpling), TE3 (C	Gases by manua	l techniques), & TI	E4 (Gases by Inst	rumental Method	(S
Aspen Environmental Ltd is a UKAS accredited Testing Laboratory No. 2395	ital Ltd is a UK.	AS accredited I	esting Laborato	nry No. 2395		200		200			

Appendix 1: Personnel, Methodologies & Equipment

Part 2 Supporting Information

Aspen Personnel

Dr G.W.Buck MCerts Reg. MM 02 001 Level 2 TE1, TE3, TE4 Team Leader

(to Nov 2017)

Mr J Buck MCerts Reg. MM 06 783 Level 1 (to June 2017)

Relevant Tests for which Aspen is MCerts & UKAS accredited

- (A1) Flow in Ducts to EN 19611-1. 2014
- (A5) Particulates in Stacks to EN 13284-1. 2002

General Description of Aspen Sampling Equipment:

Method Number	Analyte & Procedure	Status
Al	Pressure, Temperature & Velocity to EN 16911-1.2013 & MID (Range 4 - 18 m/s)	MCerts
A2	Total Organics to EN 12619. 2013 (FID)	MCerts
A3	Speciated Organics to PD CEN/TS 13649. 2014 (Charcoal Tubes) 226-09	MCerts
A4.2	Oxygen to AM for EN 14789. 2005 (Zr cell)	MCerts
A4.2	Carbon monoxide to EN 15058. 2006 (NDIR)	MCerts
A4.2	Carbon dioxide to ISO 12039. 2001 (NDIR)	MCerts
A4.2	Nitrogen oxides (as NOx) to EN 14792. 2005& MID (Chemiluminescence)	MCerts
A5	Particulates to EN 13284-1. 2002 (Range 0 - 50 mg/m ³)	MCerts
A5	Oil Mist, Tar & Bitumen fume (EN 13284-1. 2002 & MDHS 68 & 84)	MCerts
A6	Aliphatic Amines to PD CEN/TS 13649. 2014 (NIOSH Method 2010 Silica Gel Tube) 226-15	MCerts
A6	Aromatic Amines to PD CEN/TS 13649. 2014 (NIOSH Method 2002 Silica Gel Tube) 226-15	MCerts
A6	Aldehydes to PD CEN/TS 13649. 2014 (NIOSH Method 2539 XAD-2 Piperidine Tube) 226-117	MCerts
A6	Alcohols to PD CEN/TS 13649. 2014 (NIOSH 1400 & 2000 Charcoal & Silica Gel Tubes) 226-09 & 226-15	MCerts
A6	Phenols & Cresols to PD CEN/TS 13649. 2014 (NIOSH 2546 XAD-7 Tube) 226-95	MCerts
A6	Carboxylic Acids to PD CEN/TS 13649. 2014 (NIOSH 1603 Charcoal Tube) 226-09	MCerts
A6	Hydrogen sulphide (PD CEN/TS 13649. 2014 & NIOSH 6013 Charcoal tube) 226-09 & Zefluor prefilter	MCerts
A8	Water vapour to EN 14790. 2005	MCerts
A9	Hydrogen chloride to EN 1911. 2010	MCerts
A9	Ammonia to EN 14791. 2005	MCerts
A9	Sulphur dioxide to EN 14791. 2005	MCerts
A3	Organic sulphides & thiols PD CEN/TS 13649. 2014 (Tenax ATD Tube & GCMS)	UKAS
A6	Ammonia to PD CEN/TS 13649. 2014 (NIOSH 6016 Sulphuric Acid Coated Silica Gel Tube) 226-10-06	UKAS
A6	Hydrogen cyanide to PD CEN/TS 13649. 2014 (NIOSH 6010 Soda Lime Tube) 226-28	UKAS
A6.2	Impregnated Filter Method PD CEN/TS 13649. 2014 H ₂ SO ₄ & H ₃ PO ₄ (NIOSH 7908)	UKAS
A6.2	Impregnated Filter Method PD CEN/TS 13649. 2014 HCl, HBr, & HNO ₃ (NIOSH 7907)	UKAS
A6.2	Impregnated Filter Method PD CEN/TS 13649. 2014 Particulate Fluoride & HF (NIOSH 7906)	UKAS
A10	Speciated Organics using a Modified Water Trap to EA LFTGN08. 2011	UKAS

Method A1 Flow Measurement in Ducts to EN 16911-1:2013

A US "S" type pitot tube, or UK "L" type pitot tube, each individually UKAS calibrated is used to measure Velocity Pressure (Pv) at a specified number of points across each traverse of the stack (usually 2), as set out in EN 13284-1 & EN 15259. Similarly the pitot is used to measure Static Pressure (Ps), and angle of flow at each of the points. Stack internal diameter is also measured.

A UKAS calibrated "K" type thermocouple system is used to measure temperature at each point above. Where isokinetic sampling is required water vapour content is also assessed. Exhaust velocity and volume flows are calculated according to the standard.

Velocity & Static Pressure measuring equipment.

A UKAS calibrated UK (BS 1042) type pitot tube (Aspen Ref 445), is used to calibrate other UK & US type pitot tubes (Aspen Refs 200, 331, 472).

A UKAS calibrated Airflow PVM 620 electronic micromanometer (Aspen Ref 501). All pitot tubes are vacuum checked before usage.

Temperature measuring equipment.

A UKAS calibrated thermocouple (Annually changed).

A UKAS calibrated Digitron 3208 IS thermocouple reader (Aspen Ref 328).

Method A5 Particulate Testing to EN 13284-1:2002.

Testing is isokinetic to collect particulates onto 47mm glass fibre filter papers.

The filter papers are pre conditioned at 180 ° C and uniquely numbered.

The first requirement is to measure the exhaust velocity, stack size & geometry to determine the suitability of the location for sampling.

The sampling line is a modified Italian system, using numbered 4, 6 & 8 mm diameter tips, a 47 mm in line filter holder, and a supported probe to allow correct positioning. A pitot tube and thermocouple can be attached to the probe tip to allow continuous monitoring of the stack conditions.

A hose connects the high level probe to the low level equipment, which consists of a large in line silica gel trap, containing dry silica gel with a colour indicator. From here the line passes through an in line stainless steel mesh filter, (to prevent silica gel granules migrating into the sampling pump), to a sealed 110 (or 240V) diaphragm pump. The exhaust from the pump passes through a rotameter flow meter, to a calibrated dry gas meter (DGM), with an attached thermocouple, the final exhaust from the DGM is to atmosphere, so that the DGM reads at atmospheric pressure.

Sampling time is a minimum of 30 minutes per sample, and the system is arranged such that the maximum volume of sample air is collected.

Post sampling the filter paper is carefully extracted from the filter holder and returned to its uniquely labelled sample pot. Any residual filter fibres and pre filter probe contamination are rinsed out of the filter holder & probe into a clean bottle, using deionised water & an acetone final rinse.

The filter is reconditioned and reweighed by a UKAS accredited laboratory, and the retained rinse solution is evaporated and the residue weighed.

Results are presented as milligrams of particulates per cubic metre of sample air.

The whole line is constructed to EN 13284-1.

The line is flexible such that it can be reconfigured to allow the filter unit to be heated inside the flue, or located outside the flue with the line to the filter unit being heated also.

110 V Diaphragm Pump Aspen Ref No.129

Rotameter Flowmeters 0 - 10 l/m Aspen Ref No. 80

0-50 l/m Aspen Ref No. 82

Dry Gas Meters Aspen Ref No. 97 & 102

Gas Meter Temperature Aspen Ref No. 83

Appendix 2 Stack Results Calculations & Data

Steel Construction Ltd, Coventry	ıstruct	ion Ltc	1, Cov	entry						Aspen E	Aspen Environmental Ltd	€ X
Spray Area Particulate Emissions (09/03/2017)	Particuls	te Emiss	ions (09,	/03/20	17)					<u> </u>		UKAS 1886 2366
References	Dı	Dry Gas Meter:	er:	Tempe	Temperature ° C			Time	8		Particulate	
Filter Rinse	DGM Correction Factor =	tion Factor =	1.03	Stack	Gas Meter	Normal Sample	Initial	Final	Elapsed	Filter	Acetone	Concentration
Number Number	Initial	Final	Elapsed			Volume Litres			minutes	mg	mg	mg/m3
LHS Stack nearer front of building	er front of b	uilding		=								
=	re =		1016	qm								
137644 G11558	616494.8	616815.2	320.4	11	13	297.8	12:46	13:31	45	> 0.04	< 0.5	< 1.813
					Total Dry Gas Total Wet Gas	297.8					Mean Dry Gas Mean Wet Gas	< 1.813
RHS Stack nearer back of building	rer back of l	ouilding										
Barometric Pressure =	re =)	9101	qm								
137641 G11557	616247.1	616487.0	239.9	12	12	223.8	11:24	11:57	33	< 0.04	< 0.5	< 2.413
					Total Dry Gas						Mean Dry Gas	< 2.413
				ate S.	Total Wet Gas	225.4					Mean Wet Gas	< 2.396
Percentage Isokinetic Sampling Efficiency	Isokineti	c Sampli	ng Effici	ency				Water	Vapour (Water Vapour Calculation		
LHS Stack nearer front of building	er front of b	uilding			Wet Sample	Wet Sample Volume in Litres	per	Initial Sili	Initial Silica Gel Weight	ht	1004 g	
Normal Duct Velocity	ocity		7.79	s/mN 67.7	Theoretical		264.2	Final Silic	264.2 Final Silica Gel Weight	ıt	1007 g	
Sampling Tip Diameter	meter		4	4 mm	Actual		297.8	Weight o	297.8 Weight of Water Vapour	OUL	3 99	
Sampling Time			45	45 minutes	% Isokinetic	etic	112.7	Volume	112.7 Volume of Water Vapour	apour	3.73 litres	
RHS Stack nearer back of building	rer back of l	guilding			Wet Sample	Wet Sample Volume in Litres	res					
Normal Duct Velocity	ocity		8.14	8.14 Nm/s	Theoretical		202.6					
Sampling Tip Diameter	meter		4	4 mm	Actual		223.8					
Sampling Time			33	minutes	33 minutes % Isokinetic	etic	110.4					

Pitot F	low Measur	ements		l d	Aspen Er	nvironmen	ntal Ltd	UKAS UKAS 123000
Client:	Steel Construc	tion Ltd.		Date:		09/03/2017		
Address:	Coventry	**************************************		Operator:		GB, JB & SI	M	
	19139119019019			Job Numbe	er:	1318		
				Location:		Painting Area	a	
						LHS Stack (nearer front o	f building)
Details of	Duct			Atmospher	ic Pressure	(Pa) millibar	s	
				2550		Instrument	Correction	Corrected
Duct Shap	oe:	Vertical	Circular	Initial:		1019	-3	1016
Dimension	n / Diameter: (cm)	77	Final:		1019	-3	1016
Area: sq	metres		0.466	Mean:				1016
1	11000		Axis 1:			Axis 2:		
Pitot Tube	stance into Du	ict	Velocity	Static	Duct	Velocity	Static	Duct
Position:	% Diameter	cm	Pressure	Pressure	Temp	Pressure	Pressure	Temp
			Pv	Ps	° Celsius	Pv	Ps	^o Celsius
			Pascals	Pascals		Pascals	Pascals	
3	15.3	11.8	16.2	140	11	22.4	140	11
Centre	50	38.5	40.9					
8	84.7	65.2	33.5	140	11	53	140	11
	RMS	& Means:	31.9	140.0	11.0	40.7	140.0	11.0
Mean Pv	(Pascals)	36.31	Thermo &	Reader	547 & 328	Mean T in	K (°C + 273)	284
Static Pre	ssure (Pa)	140	Pitot Tube	& Manome	ter	472 & 501	K Factor	1
Duct Velo	ocity (V) @ 289	K 101.3 kP	a in metres	per second				7.63
	city (V) @ Exh				r second			7.50
Duct Velo	city (V) @ 273	3K, 1013mb	, in metres	per second				7.23
Duct Volu	me Flow @ 289	K in cubic	metres per	second				3.55
Duct Volu	me Flow @ 273	3K, 1013mb	, in cubic m	etres per se	cond			3.37
Duct Volu	me Flow @ 273	3K, 1013mb	, in cubic fe	et per minut	e			7131
Duct Volu	me Flow @ Te	mperature	(T) in cubic	feet per min	ute			7527
		100 1100			© Aspen Env	rironmental For	m 20 Version	8 (Feb 2017)

Pitot F	low Measur	ements		l d	Aspen Er	nvironme	ntal Ltd	UKAS SANS SANS
Client:	Steel Construct	tion Ltd.		Date:		09/03/2017		
Address:	Coventry	V2004002-000000-E		Operator:		GB, JB & SI	M	
				Job Numbe	er:	1318		
				Location:		Painting Area	a	
						RHS Stack (nearer back o	of building)
Details of	Duct			Atmospher	ic Pressure	(Pa) millibar	S	7.50
				27.0		Instrument	Correction	Corrected
Duct Shap	e:	Vertical	Circular	Initial:		1019	-3	1016
Dimension	n / Diameter: (d	cm)	77	Final:		1019	-3	1016
Area: sq	metres		0.466	Mean:				1016
	11 1		Axis 1:			Axis 2:		
Pitot Tube	stance into Du	ct	Velocity	Static	Duct	Velocity	Static	Duct
Position:	% Diameter	cm	Pressure	Pressure	Temp	Pressure	Pressure	Temp
		159600045	Pv	Ps	° Celsius	Pv	Ps	° Celsius
			Pascals	Pascals		Pascals	Pascals	
3	15.3	11.8	33	140	12	50.3	140	12
Centre	50	38.5	44.4	140	12	4,000.00		
8	84.7	65.2	32.6	140	12	24	140	12
	RMS	& Means:	37.1	140.0	12.0	39.4	140.0	12.0
Mean Pv	(Pascals)	38.24	Thermo &	Reader	547 & 328	Mean T in	K (°C + 273)	285
Static Pre	ssure (Pa)	140	Pitot Tube	& Manome	ter	472 & 501	K Factor	1
Duct Velo	ocity (V) @ 289	K 101.3 kP	a in metres	per second				7.84
	city (V) @ Exha				r second			7.73 7.43
	me Flow @ 289							3.65
Duct Volu	me Flow @ 273	K, 1013mb	, in cubic m	etres per se	cond			3.46
Duct Volu	me Flow @ 273	K, 1013mb	, in cubic fe	et per minut	e			7332
Duct Volu	me Flow @ Te	mperature	(T) in cubic	feet per min	ute			7739
					© Aspen Env	rironmental For	m 20 Version	8 (Feb 2017)

Test Certificate

Date 27/03/2017

-

Aspan Environmental Ltd

25A Church Street Uttoxeter Staffordshire

ST14 8AG

Order No.

1925

Certificate No.

WK17-1802

leeue No.

1

Contact Description Dr Geoff Buck

4 filters & 4 washes for TPM

Date Received

14/03/2017

Technique

Gravimetric Stack

Sample No.	B27131	137641	Method
Total particulate m	natter	<0.04 mg	D9(U)
Sample No.	927132	197844	Method
Total particulate m	natter	<0.04 mg	D9(U)

Sample No.	927135	G11657	Method
Total particulate m	natter	<0.5 mg	D9(U)
Sample No.	927138	G11558	Method
Total particulate m	natter	<0.5 mg	D9(U)

Page 1 of 2

RPS Laboratorias Ltd. Unit 12. Waters Edge Business Park. Modwen Road. Salford. M5 3EZ Tel: (0161) 872 2443 Fax: (0161) 877 3959

Test Certificate

Date 27/03/2017

		. 444 444411	744		
Client	Aspen Environmental Ltd		Certificate No.	WK17-1802	
			leeus No.	1	
Tested By	Kirstie Davenport	Date	23/03/2017		
1000 (1993) Self (197	Company of the Compan		27/03/2017		
Approved By		Date	27/03/2017		
	Joanne Dewhurst				
	Operational Manager				
For and on author	ity of RPS Laboratorias Ltd.				
Method Symbols	(U) A malysis is UKAS Accredited				
	(N) A malysis is not UKAS Accredited				
Concentration values (mg/m3 and ppm) are calculated on the basis of infor	mation provided by the cus	lamer.		
Results stated as mila i	referring to the sample valume.				
RPS Laboratories term	s and conditions apply - a copy is available on requ	5 1.			
A nalysis carried out on	samples as eceived				

This document may not be reproduced other than in full, except with the written approval of the issuing laboratory.

Paga 2 of 2

Aspen Environmental Ltd	onmen.	ral Ltd			Sheet No:	+ 40	San	Sampling Data Form	La FOLIII
Location & Drawing	36	J:				Location			
NIETE LANGUAGE		RHS Stock			Date 09/3	/3 /17 Time 1019			
					Barometric Pressure	Pressure mb			
					Temperature ° C	e ° C Exhaust			
						Ambient			
						Gas Meter 1			
Stack Dimensions (cm) & Aspect	n) & Aspect						Aspen Jo	Aspen Job Number	1318
Sample Position		Time	Gas Meter /	Counter	Уасиит %	Vacuum % Sampling Points	3	cm Notes	
Reference	Initial	Final	Initial	Final	<2	Comments 6.6 Um.		0.7001	0
	21 (+	6.90	1.41	>				
137641	11.24	+33	1. 477/13	616487.0				Is the SiGel >	Is the SiGel >50 % Fresh 1/25
								Stack Gas Homogeneity	omogeneity M/A
	17.04	-+	9.06	8.06	1				
								Equipment & Blank	k Blank
								129	Pump
								80	Flowmeter
								97	Gasmeter
								8	Gas Temp
								1	Silica Gel
									Thermocouple
									Field Blank
							,	Operation Coperation	Operator
								60	99
								Norr	nal Flow
								3.46	7.43 Nm/5 3.46 Na3/5

City O Ctack I acction	111			,			Choot Number	1, 0
Site & Stack Location	700	COVERTY	CADOGA	2015	KHS Stack		Sueer rumper	ナックン
Date 9/3/19		0					Job Ref	1318
Thermocouple & Reader	ler	547 +	328	Pitot Tube &	Pitot Tube & Micromanometer (72	105 + 26h		
Pitot Checks:	Deformed?	X	Blocked?	۵	Clean?)	Straight?	
Leak Check:	Vacuum leak check:	check: (GB)	-1000		Barometric Pressure mb		1018	
S type pitot: Static Pr	Static Pressure must be < 10	e < 10 Pa on each side	ch side		Ambient Temperature ° C		14	
1st Traverse	1	2	3 (f)	4	5	9	7	8
Velocity pressure Pv	33.0	3.2.6	4.42					
Static Pressure Ps								
Temp ° C	71							
Swirl Angle °								
Velocity m/s								
Sampling I/min								
Tip Diam mm								
Uncertainty Pv:								
2nd Traverse	I	2	3	4	5	9	7	8
Velocity pressure Pv	50.3	24.0						
Static Pressure Ps		+140						
Temp ° C								
Swirl Angle °								
Velocity m/s								
Sampling I/min								
Tip Diam mm		- 4						
Site Diagram, Sampling Details & Comments	ng Details & C	Comments			1,210 @ 15°C			
36000		-26			8.5 m /s			
9	8	7			6 LUMBY MM	mm		
							odO	erator
							68 + 5M + JB	10 P

Location & Drawing SCL further from LADDER L Stack Dimensions (cm) & Aspect Sample Position Time Reference Initial Final 137644 IE-46 FUS 13.54 A1	4S Stack Gas Meter Initial	D B B B B Counter V Final	Date O9/3/17 Barometric Pressure Temperature ° C	Location 3 /17 Time ressure mb 1014 • C Exhaust Ambient		
CAPDER Time Time Initial Fi 12.14 + 13.14 + 13.34 +1	4S Stack Gas Meter Initial	B B B B B B B B B B B B B B B B B B B	ate 09/ arometric l emperature	Time mb Exhaust Ambient		
im Fig. 7	4S Stack Gas Meter Initial 9U.6	Counter V Final	arometric l emperature	mb Exhaust Ambient		
ime ± ± ± ±	Gas Meter Initial 44.6	Counter V Final	emperature			
ii iii	Gas Meter Initial	Counter V Final		Ambient		
i i i i i i i i i i i i i i i i i i i	Gas Meter Initial 9U-6	Final 16.8				
ii e	Gas Meter Initial 916	Final		Gas Meter 15		
Position Time Initial [12.14]	Gas Meter Initial 40.6	Final			Aspen Job Number	Number 1318
10:19 12:46	Initial 91. 6	Final	acuum %	/ Counter Vacuum % Sampling Points	cm	Notes
12.19	9716	18.91	× ×	Comments		5
11.11	976	19.31	,	61 Um.		0.1001
45.81						
45.81 45.81					2	Is the SiGel >50 % Fresh Y
15.24					S	Stack Gas Homogeneity W/P
	9 8 161919	2.513719				
+	+					
	4.22	22.6			1	Equipment & Blank
						A-1
						Pump
						Flowmeter
						Gasmeter
						Gas Temp
						Silica Gel
						Thermocouple
						Field Blank
						Operator
						68 +JB
						Normal Flow
						7.23 Nm/S
						3-37 Nm3/5

Date 4/3/Introduction Date 4/3/Introduction Pitot Tube & Micromanometer cs2 Pitot Tube & Micromanometer cs3 Pitot Checks: Deformed? Blocked? Clean? Clean? Clean? Barometric Pressure mb Ambient Temperature °C 6 Ambient Temperature °C 6 4 5 6 1 st Traverse 1 2 3 .cf 4 5 5 6 7 6 7 6 6 7 6 6 7 6 6 7 6 6	Straight? Straight? Straight? Straight? Straight? 6 7 8 6 7 8 6 7 8 6 7 8 8	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Blocked? Blocked? a 2 3 cf 4 con each side b 1000 con each side con each si	7 = 2	
Blocked? Blocked? a 3 cf 4 con each side con ea	Straight?	
8) on each side 2 3 LP 4 4 3. S 10.7 11 11 2 3 4 4 5. O 3 4 4	C 14	
2 3 LP 4 3.5 Lo.7 1140 11140 11150 1	5	
2.5 Lo.7 thu in		σο σ
3.5 Lo.7 11 11 11 11 11 11 11 11 11 11 11 11 11		
2 3 4 5.00 3 4		∞
3 4		× ×
2 3 4		
2 3 S. O		
2 3 5.0 4		
3 3 4		oc
5.0		
5.0		× ×
3.0		
	8.1 m/s.	
		Operator
	JC 8 + JB	38

Appendix 3 Uncertainty Calculations

Uncertainty for Particulate Sampling to EN 13284: 2002 Principal Uncertainties for Particulate Sample of 10 mg				Aspen Environmental Ltd		
Cahn Balance (PBS) at 100 mg	± 0.022mg	ř	95 %		0.0220	0.0005
Volume Measurement (Schlumberger)(Labcal) 400 L	\pm 0.5 % of volume		2 litres	4	4.0000	16.0000
	+ resolution		0.2 litres	0.025	0.1200	0.0144
DGM Aspen 97	± 2.3 %				4.6000	21.1600
Change in DGM temperature	± 10/293				0.0341	0.0012
Change in atmospheric pressure	$\pm 2/1013$				0.0020	0.0000
No change in humidity (dry gas)						
No change in oxygen (LEV system)						
					Sum Sqs	37.1761
					sq rt	6.0972
					Expanded Result	6.1 %