

Our Ref: P-RED14-001/EB/R1/Rev0 Client Ref:

27th April 2015

lan Livingston
Terex United Kingdom Limited
Central Boulevard
Prologis Park
Coventry
CV6 4BX

Dear Ian

Re: Emissions Monitoring

Please find enclosed a copy of your report for the monitoring carried out during January 2014.

I trust the enclosed is satisfactory but if you have any questions please contact me on the numbers below or directly on 07971 628431.

Yours sincerely

Elena Berek BSc (Hons), MSc, CSci, CChem MRSC Director

PROJECT TEAM

Project work carried out by:	Elena Berek – Team Leader
	Tony Berek – Env Consultant
	Vicki Gavin – Env Consultant
Report prepared by:	Elena Berek - Director
, , ,	
Signature:	
_	
Date:	16 th February 2014
Report reviewed by:	Philip Butler - Director
Signature:	
Date:	16 th February 2014
Report authorised by:	Philip Butler
Signature:	
Date:	16 th February 2014

JANUARY 2014

EMISSIONS MONITORING REPORT

Ian Livingston
Terex United Kingdom Limited
Central Boulevard
Prologis Park
Coventry CV6 4BX

Tel: 02476 339634

Prepared By

Redwing Environmental Ltd
Unit 7, Manor Road Business Park
Manor Road
Atherstone
Warwickshire CV9 1TE

Tel: 0844 686 7000 - Fax: 0844 686 7070

Report Number P-RED14-001/EB/R1/Rev0

16th February 2014

Contents

Executive	Summary
	Sullillary

Calibration Certificates are available upon request

1.0	Introduction	Page 1
1.0	Monitoring Programme	Pages 1 - 2
1.5	Monitoring Results, comparison to emission limits	Pages 3 – 5
2.0	Supporting Info	Page 6
2.1	General Info	Page 6
2.1.1	MCerts information	Page 6
2.2	Methods	Pages 6 – 7
3.0	Quality Assurance	Page 8
4.0	Disclaimer	Page 8
Appen	dix A – Particulate, Isocyanate & Velocity Results	Appendix Pages 1 to 35
Appen	dix B – VOC Raw Data	Appendix Pages 36 to 40
Appen	dix C – VOC Charts	Appendix Pages 41 to 45

EXECUTIVE SUMMARY (Page 1 of 1)

The following document details the emissions to air monitoring survey undertaken by Elena Berek, Vicki Gavin and Tony Berek of Redwing Environmental Ltd at Terex United Kingdom Limited on the 22nd and 23rd January 2014.

All results pertain to the dates monitored only.

A summary of results is shown below:-

Emission point reference Stack Nº	Total Particulate Matter at reference conditions	* Highest 30 minute mean VOC at reference conditions	Isocyanate Concentration at reference conditions	Velocity corrected to reference conditions	Volume flow corrected to reference conditions
Driver Orene Death	(mg/m³)	(mg/m³)	(mg/m³)	(m/s)	(m³/hr)
Primer Spray Booth 1	0.52 ± 0.14			7.4	53,883
Primer Spray Booth 2	1.28 ± 0.25	-		7.7	55,712
Primer Flash-off	0.54 ± 0.14			8.2	14,906
Topcoat Spray Booth 1	0.93 ± 0.13		<0.02	6.4	46,099
Topcoat Spray Booth 2	1.02 ± 0.13		<0.02	7.0	50,748
Topcoat Flash-off	0.19 ± 0.13	-	<0.02	11.7	33,013
Topcoat Curing Oven	0.62 ± 0.13	-	<0.02	12.3	89,113
Preparation Booth 1	0.95 ± 0.24	-		12.3	17,073
Preparation Booth 2	0.35 ± 0.14	-		12.3	17,007
Spray Bake Booth 1			<0.02	12.5	22,677
Spray Bake Booth 2			<0.02	12.2	22,041
Scissor 1 Booth 1	0.59 ± 0.15	30.9 ± 1.6 (26.2)		8.6	11,950
Scissor 1 Booth 2	0.52 ± 0.14	16.4 ± 0.7 (12.0)		8.9	12,292
Scissor 1 Oven	0.91 ± 0.29			6.7	755
Scissor 2 Booth 1	1.12 ± 0.27	36.6 ± 1.7 (28.9)		7.9	10,891
Scissor 2 Booth 2	0.86 ± 0.13	23.0 ± 1.3 (21.7)		7.7	10,699
Scissor 2 Oven	1.10 ± 0.30			5.5	627

^{*} Figure in brackets represent the average VOC for the duration of the monitoring

NOTE 1: Reference conditions are standard Temperature (273K) and standard pressure (101.3kPa), without correction for water vapour

1.0 INTRODUCTION

1.1 The exhausts listed below were monitored with respect to quotation **Q-RED14-001/EB/v0** for the compliance check monitoring of emissions to air. The substances requested for monitoring at each emission point are listed below:

Monitoring Programme

Stack reference/Proposed method	Total Particulate Matter	Volatile Organic Compounds	Isocyanates
	BS EN 13284	BS EN 13526	USEPA CTM36
	Main Paint F	acility	
Primer spray booth - 1	✓	×	×
Primer spray booth – 2	✓	×	×
Primer Flash off	✓	×	×
Topcoat Spray booth -1	✓	*	✓
Topcoat spray booth – 2	✓	×	✓
Topcoat Flash off	✓	×	✓
Topcoat Curing Oven	✓	×	✓
Preparation Booth 1	✓	*	×
Preparation Booth 2	✓	*	*
Spray Bake Booth 1	×	*	✓
Spray Bake Booth 2	×	×	✓
Scissor 1 Booth 1	✓	✓	*
Scissor 1 Booth 2	✓	✓	*
Scissor 1 Oven	✓	×	*
Scissor 2 Booth 1	✓	✓	×
Scissor 2 Booth 2	✓	✓	×
Scissor 2 Oven	✓	×	×

1.2 Terex United Kingdom Limited operate a metal and plastic coating process at their site in Coventry, the process is governed by the Secretary of States Process Guidance Note PG6/23 – Coating of Metal and Plastic.

1.3 The emission limits are listed below:

Process Guidance Note PG6/23: Coating of Metal and Plastic

EMISSION LIMITS

ANALYTE	TOTAL PARTICULATE	TOTAL VOC	TOTAL ISOCYANATES
Emission Limit	50 mg/m ³	150 mg/m ³	0.1mg/m ³

1.4 The velocity and temperature profile were within the required parameters of 3:1 metres/second and \pm 1% for temperature profile. This information indicates that the sample ports are in ideal positions to collect the samples under representative conditions.

Terex United Kingdom Limited Redwing Environmental Ltd

1.5 Monitoring Results

Emission Point Reference	Substance to be Monitored	Emission Limit Value	Periodic Monitoring Result	Units	Reference Conditions 273 K, 101.3 kPa	Date of Sampling	Start and End Times	Monitoring Method Reference	Operating Status
Primer Spray Booth 1	Total Particulate Matter	50	0.52 ± 0.14	mg/m³	273K, 101.3kPa	22/01/14	1140 – 1240	BS EN 13284-1	Normal
Primer Spray Booth 2	Total Particulate Matter	50	1.28 ± 0.25	mg/m³	273K, 101.3kPa	22/01/14	1245 – 1345	BS EN 13284-1	Normal
Primer Flash-off	Total Particulate Matter	50	0.54 ± 0.14	mg/m³	273K, 101.3kPa	23/01/14	1255 – 1355	BS EN 13284-1	Normal
Top Coat Spray Booth 1	Total Particulate Matter	50	0.93 ± 0.13	mg/m³	273K, 101.3kPa	23/01/14	0947 – 1047	BS EN 13284-1	Normal
	Isocyanates	0.1	<0.02	mg/m³		23/01/14	0845 – 0945	USEPA 36	
Top Coat Spray Booth 2	Total Particulate Matter	50	1.02 ± 0.13	mg/m³	273K, 101.3kPa	23/01/14	1152 – 1252	BS EN 13284-1	Normal
	Isocyanates	0.1	<0.02	mg/m³		23/01/14	1050 - 1150	USEPA 36	

Emission Point Reference	Substance to be Monitored	Emission Limit Value	Periodic Monitoring Result	Units	Reference Conditions 273 K, 101.3 kPa	Date of Sampling	Start and End Times	Monitoring Method Reference	Operating Status	
Topcoat Flash-off	Total Particulate Matter	50	0.19 ± 0.13	mg/m³	273K, 101.3kPa	22/01/14	0930 -1030	BS EN 13284-1	Normal	
	Isocyanates	0.1	<0.02	mg/m³		22/01/14	1035 – 1135	USEPA 36		
Topcoat Curing Oven	Total Particulate Matter	50	0.62 ± 0.13	mg/m³	273K, 101.3kPa	22/01/14	1400 – 1500	BS EN 13284-1	Normal	
Preparation Booth 1	Total Particulate Matter	50	0.95 ± 0.24	mg/m³	273K, 101.3kPa	22/01/14	0925 – 1025	BS EN 13284-1	Normal	
Preparation Booth 2	Total Particulate Matter	50	0.35 ± 0.14	mg/m³	273K, 101.3kPa	22/01/14	1135 – 1235	BS EN 13284-1	Normal	
Spray Bake Booth 1	Isocyanates	0.1	<0.02	mg/m³	273K, 101.3kPa	22/01/14	1030 – 1130	USEPA 36	Normal	
Spray Bake Booth 2	Isocyanates	0.1	<0.02	mg/m ³	273K, 101.3kPa	22/01/14	1240 – 1340	USEPA 36	Normal	
Scissor 1 Booth 1	Total Particulate Matter	50	0.59 ± 0.15	mg/m³	273K, 101.3kPa	23/01/14	0850 – 0950	BS EN 13284-1	Normal	
Scissor i Bootii i	Volatile Organic Compounds	150	30.9 ± 1.6	mg/m³			1000 - 1100 B			
Scissor 1 Booth 2	Total Particulate Matter	50	0.52 ± 0.14	mg/m³	273K, 101.3kPa	23/01/14	0850 - 0950	BS EN 13284-1	Normal	
	Volatile Organic Compounds	150	16.4 ± 0.7	mg/m³			1102 - 1202	BS EN 12619		

P-RED14-001/EB/R1/Rev0 Page 4 of 8

Emission Point Reference	Substance to be Monitored	Emission Limit Value	Periodic Monitoring Result	Units	Reference Conditions 273 K, 101.3 kPa	Date of Sampling	Start and End Times	Monitoring Method Reference	Operating Status
Scissor 1 Oven	Total Particulate Matter	50	0.91 ± 0.29	mg/m³	273K, 101.3kPa	23/01/14	1302 – 1402	BS EN 13284-1	Normal
Scissor 2 Booth 1	Total Particulate Matter	50	1.12 ± 0.27	mg/m³	273K, - 101.3kPa	23/01/14	1055 – 1155	BS EN 13284-1	Normal
	Volatile Organic Compounds	150	36.6 ± 1.7	mg/m³	TOT.SKI a		1210 – 1310	BS EN 13526	Normal
Scissor 2 Booth 2	Total Particulate Matter	50	0.86 ± 0.13	mg/m³	273K,	23/01/14	1200 – 1300	BS EN 13284-1	Normal
	Volatile Organic Compounds	150	23.0 ± 1.3	mg/m³	101.3kPa		1350 – 1450	BS EN 13526	Normal
Scissor 2 Oven	Total Particulate Matter	50	1.10 ± 0.30	mg/m³	273K, 101.3kPa	23/01/14	1405 - 1505	BS EN 13284-1	Normal

2 Supporting Information (Held by Redwing Environmental Ltd)

2.1 General Information

2.1.1 Redwing Environmental Ltd staff details

Elena Berek Vicki Gavin Tony Berek

2.2 Redwing Environmental Ltd method details

2.2.1 Volatile organic compounds (BS EN 12619: 2013)

- 2.2.2 Monitoring to determine VOC emission concentrations was in accordance with BS EN 12619: 2013.
- 2.2.3 Volatile organic compound concentrations were measured using a Signal portable heated VOC analyser. The analyser works by burning the gas sample in a hydrogen flame. This ionises any organic compounds present and the current produced across an electric field is proportional to the number of carbon atoms.
- 2.2.4 The analyser and heated line were zeroed and calibrated with a test gas (80 ppm and or 800ppm propane) prior to each sampling run. VOC sampling was undertaken over a period of at least 60 minutes to cover any process variation.
- 2.2.5 All data was logged onto a Grant Squirrel data logger set at 5 second logging.
- 2.2.6 A heated line from the sample point to analyser was used to ensure that condensation did not occur leading to the loss of sample concentration. Volatile organic compounds.

2.3 Stack Velocity, Pressure and Temperature Measurements

2.3.1 The stack velocity, pressure and temperature will be measured by full pitot traverses of the duct using the points provided. Measurements will be taken at the relevant positions based on the particulate standard followed.

2.4 Leak tests for extractive techniques

- 2.4.1 All extractive-sampling techniques were tested for leaks before sampling proceeded. Any leaks present were eliminated prior to sampling and will be reported.
- 2.4.2 Leak checks are carried out during the calibrating procedure, as the concentration of the calibration gas is known it is readily indentified if air is entering the sample line and diluting the gas.

2.5 Particulate matter BS EN 13284-1: 2002

- 2.5.1 Total particulate matter was sampled using a Zambelli isokinetic sampling system in accordance with BS EN 13284-1: 2002 Determination of Low Range Mass Concentration of dust (< 50mg/m³).
- 2.5.2 The Zambelli sampling system monitors temperature, static pressure and velocities within the duct using an S-type pitot tube and K-type thermocouple. The sampling rate was continuously monitored and adjusted relative to the duct velocity to ensure isokinetic-sampling conditions were maintained throughout the monitoring period.
- 2.5.3 Exhaust gases were drawn under isokinetic conditions from the exhaust points using the Zambelli sampling probe, particulate matter was then collected on a pre-weighed glass fibre filter (or most suitable filter for process) contained within the filter cassette holder, and the total particulate matter determined gravimetrically.
- 2.5.4 It is also necessary to wash the probe and nozzle out with water and then acetone between sampling and the weight of the probe washing added to that collected on the sample filter. Analysis of an acetone/water blank will be carried out and the result corrected accordingly.
- 2.5.5 The sample positions were calculated with respect to BS EN 13284-1: 2002 Stationary source emissions Determination of Low Range Mass Concentration of dust.
- 2.5.6 Sampling may be carried out internally or externally, the method used will be reported and provided there are no deviations from the method the uncertainty for the monitoring procedure is reported to be within the requirements specified by the Hazardous Waste Directive (HWD) as stated in the Environment Agency Technical Document M2

Uncertainty: ± 30%

2.5.7 ISO 9096: 2003 and BS EN 13284-1: 2002 are very similar methods but BS EN 13284-1: 2002 recommends the use of an 8mm nozzle and nozzles less than 6mm should not be used.

2.6 Isocyanates (USEPA CTM 36a)

- 2.6.1 There are several Isocyanates; these include TDI, MDI, HDI and IPDI. The isocyanate to be monitored is HDI (1,6 hexamethylene diisocyanate). All Isocyanates follow the same procedure for sampling and analysis.
- 2.6.2 Isocyanates can be sampled non-isokinetically following MDHS 25 or isokinetically following the USEPA CTM 36
- 2.6.3 The method used was isokinetic method. A sample probe was placed inside the stack; the sample probe was heated.

2.6.4 The samples are stored in brown glass bottles and submitted for analysis. The samples will be 'blown down' to dryness using air and made upto 1ml using the most suitable matrix (usually acetonitrile). The sample will then be ready for analysis by HPLC (High Pressure Liquid Chromatography).

3.0 Quality Assurance

- 3.1 Redwing Environmental Ltd will always endeavour to follow the methods specified in the Environment Agency Technical Guidance M2. Redwing Environmental Ltd is a member of the Source Testing Association (STA) and therefore operates under the STA's code of practice.
- 3.2 Redwing Environmental Ltd is accredited to ISO 9001:2008, ISO 14001:2004 and ISO 17025:2005.

4.0 Disclaimer

- 4.1 Redwing Environmental Ltd confirms that in preparing this report all reasonable skill and care has been exercised.
- 4.1.1 Unless specifically assigned or transferred within the terms of the agreement, Redwing Environmental Ltd asserts and retains all copyright, and other Intellectual Property Rights, in and over the report and its contents.

APPENDIX A

Particulate, Isocyanate & Velocity Results

Redwing Environmental Ltd Appendix Page 2 of 45

Client	Terex								
Site Address	Coventry								
Job Number	P-RED14-001								
Date	22nd January 2014								
Operator(s)	Vicki Gavin & Tony Be	rek							
-	,								
					Isokinetic Sa	mple Positions (%)	San	npling Plane Diagrar	1
Stack Re	eference		primer booth 1		multiply by dian	neter to obtain sample points			
					1	6.70		Ì	
Number of Stacks				1	2	25.00			
Stack Configuratio	n		Ro	ound	3	75.00	/		Sample Line B
Dimensions (mtrs)				.60	4	93.30	-		
	applicable) (metres	1			5	N/A	\		1
Number of Sample				1	6	N/A			
Number of Sample				4	7	N/A		Sample Line A	
Nozzle Diameter (r	•			3.0	8	N/A		< • /	
Nozzle Area (m²)	,			005024	1	N/A		Axis 1	Axis 2
Stack Area (m²)				011	Averag	ge Isokinetic Flow Ra	te (Itrs/min)	21.43	23.45
Pitot Coefficient	0.84	Pitot C	alibration Due I			March 2014		Atmos. Pres	
Position	Distance	Axis 1	Temperature	Swirl Test	Axis 2	Temperature	Swirl Test	100	
No.	(cms)	(pa)	(C)	Pass (Y/N)	(pa)	(C)	Pass (Y/N)	Static Pres	
1	10.72	56	18.0	4.0	61	18.0	4	-17.	
2	40.00	43	18.0	3.0	44	18.0	4	1 Axis	2 Axis
3	120.00	32	18.0	3.0	37	18.0	4	Velocity of	
4	149.28	42	18.0	4.0	65	18.0	4	7.11	7.78
5	N/A	42	10.0	4.0	05	10.0	*	Volume Flow	
6	N/A							14.30	15.64
7	N/A							14.50	15.04
8	N/A							Reduce	d Exit
	rages	43	18.0		52	18.0		N//	
	_				52	10.0			`
	o (in K) Tp = ((Mean T1						291.0		
	ature readings ± 5% (°		05Tp-273) =			3.45	to		32.55
lighest Velocity Rea		=					9.0		
owest Velocity Read		=					6.1		
Ratio Highest/Lowest	t (Max permitted = 3:1)							1.47 :	1
				On site	e Checklist				
	Gas Temps	OK				Manometer Leak Ch		OH	
nitial Leak Check	<0.2	Final leak check	<0.2			Pitot Leak Check		Or Dum 4	
	heck < 2% Vol (I/min)	0.43			Overall Is	okinetic Ratio (%) (mus	t be 95 to 115%)	Run 1	Run 2
	mum Velocity require		YES					102.9	N/A
	cal Flow Present, YES or I		NO			ent rails and kick board			YES
	rea greater than 5m ² ?		YES		Is the area infro	ont of the sample line the	he length of the probe NO)	+ 1 metre? (YES or	YES
Passed	Highest to lowest Velo	city (3:1)	YES				·		
				Site Equ	ipment Used				
Pitot Re	eference	RED 02	37			Manometer Referen	ice	RED (400
Thermomet	er Reference	RED 03	54			Thermocouple Refere	ence	RED (344
Balance	Reference					Sampling Pump Refer	ence	RED (385
	re Reference	RED 01	23			Barometer Referen	re	RED (402

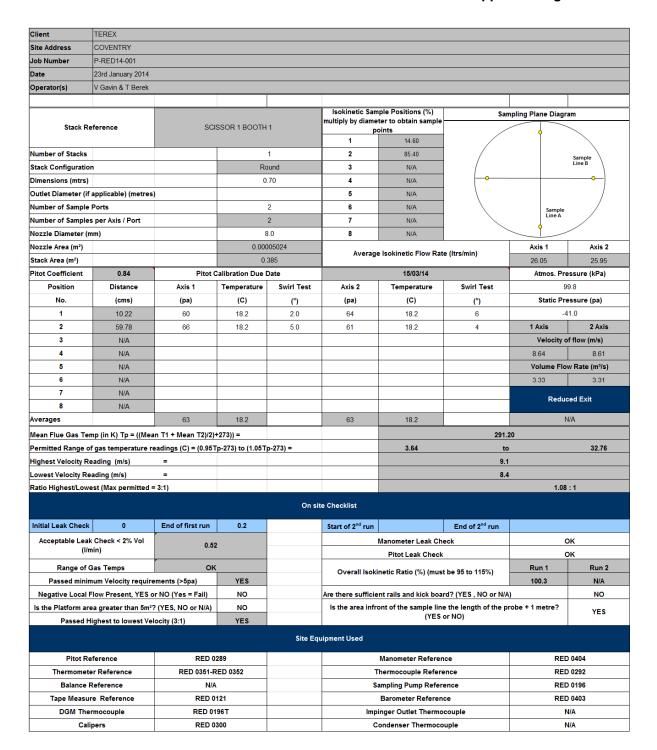
Stack Reference ID		F	rimer booth	1			
	Terex RUN 1						
Filter Reference No	G47-200114-03						
Date		22	nd January 20)14			
Sample Period	11:40		to			12:40	
Velocity (m/s)		•	7.44				
Volumetric flowrate of Stack gas (m³/hr)			53883				
Average Stack Temp (°C)			18.0				
Temperature Range - ± 5% (°C)	3.45		to			32.55	
Lowest Velocity Reading (m/s)			6.11				
Highest Velocity Reading (m/s)			8.99				
Ratio (less than 3:1)	1.47		:			1	
Pre-conditioning temperature of Filter (°C)	180						
Instack sampling - Max Filter temperature (°C)			18.1				
Post-conditioning temperature Filter/Wash (°C)			160				
Oxygen %			18.6				
Carbon Dioxide %			1.40				
Moisture (%)			4.16				
Litres sampled			1450				
Corrected volume sampled - STP (m³)			1.388				
Blank Filter Run weight gain (mg)	0.0	000	Blank Concentra			0.000	
Blank Wash Run weight gain (mg)	0.0	040	(mg/m ³			0.029	
Weighing uncertainty of balance (mg)	0.074	This must b	e <5% of ELV	ELV =	50	2.5	
Overall Blank value (mg/m³)	0.029	This must be	e <10% of ELV	ELV =	50	5.0	
Particulate weight collected on filter (mg)			0.50				
Particulate weight collected in Wash (mg)			0.25				
Total Particulate weight collected (mg)			0.75				
Total Particulate Concentration, *STP, dry gas (mg/m³)			0.54				
Total Particulate Concentration, *STP, wet gas (mg/m³)			0.52				
Total Particulate Concentration corrected for Oxygen, *STP, dry gas (mg/m³)			N/A				
Total Particulate Mass Emission (kg/hour)			0.027				

Redwing Environmental Ltd Appendix Page 4 of 45

Client	Terex									
Site Address	Coventry									
Job Number	P-RED14-001									
Date	22nd January 2014									
Operator(s)	Vicki Gavin & Tony Be	rek								
-	,									
					Isokinetic Sa	mple Positions (%)	San	npling Plane Diagrar	n	
Stack Re	eference		primer booth 1		multiply by dian	neter to obtain sample points				
					1	6.70		ľ		
Number of Stacks				1	2	25.00				
Stack Configuratio	n		Ro	ound	3	75.00	/		Sample Line B	
Dimensions (mtrs)				.60	4	93.30	-		-	
	applicable) (metres	1			5	N/A	\		/	
Number of Sample				1	6	N/A				
Number of Sample				4	7	N/A		Sample Line A		
Nozzle Diameter (n	•			3.0	8	N/A		< • -		
Nozzle Area (m²)	,			005024	1	NA		Axis 1	Axis 2	
Stack Area (m²)				011	Averag	ge Isokinetic Flow Ra	te (Itrs/min)	22.97	23.43	
Pitot Coefficient	0.84	Pitot C	alibration Due I			March 2014	March 2014 Atmos. Press			
Position	Distance	Axis 1	Temperature	Swirl Test	Axis 2	Temperature	Swirl Test	100		
No.	(cms)	(pa)	(C)	Pass (Y/N)	(pa)	(C)	Static Pressure (pa)			
1	10.72	65	17.6	4.0	57	17.6	-22			
2	40.00	45	17.6	5.0	62	17.6	5	1 Axis	2 Axis	
3	120.00	46	17.7	5.0	45	17.6	5	Velocity of		
4	149.28	43	17.6	4.0	43	17.6	4	7.62	7.77	
5	N/A	45	17.0	4.0	45	17.0	*	Volume Flow		
6	N/A							15.32	15.63	
7	N/A							15.52	15.05	
8	N/A							Reduce	d Exit	
	rages	50	17.6		52	17.6		N//		
	_				32	17.0			`	
	o (in K) Tp = ((Mean T1						290.6			
	ature readings ± 5% (°		05Tp-273) =			3.08	to		32.14	
lighest Velocity Rea		=					9.0			
owest Velocity Read		=					7.1			
Ratio Highest/Lowest	t (Max permitted = 3:1)							1.27 :	1	
				On site	e Checklist					
	Gas Temps	OK				Manometer Leak Ch		OF		
nitial Leak Check	<0.2	Final leak check	<0.2			Pitot Leak Check		Or David		
	heck < 2% Vol (I/min)	0.46			Overall Is	okinetic Ratio (%) (must	t be 95 to 115%)	Run 1	Run 2	
	mum Velocity require		YES					98.7	N/A YES	
	cal Flow Present, YES or N		NO		Are there sufficient rails and kick board? (YES , NO or N/A)					
	rea greater than 5m ² ?		YES		Is the area infro	ont of the sample line th	ne length of the probe NO)	+ 1 metre? (YES or	YES	
Passed	Highest to lowest Velo	city (3:1)	YES				·			
				Site Equ	ipment Used					
Pitot Re	eference	RED 02	37			Manometer Referen	ice	RED (1400	
Thermomet	er Reference	RED 03	54			Thermocouple Refere	ence	RED (344	
Balance	Reference					Sampling Pump Refer	ence	RED (1385	
T 11	re Reference	RED 01	23			Barometer Reference	re	RED (1402	

Stack Reference ID		ŗ	orimer booth	1					
	Terex								
	RUN 1								
Filter Reference No	G47-200114-05								
Date	22nd January 2014								
Sample Period	12:45		to			13:45			
Velocity (m/s)	7.70								
Volumetric flowrate of Stack gas (m³/hr)	55712								
Average Stack Temp (°C)	17.6								
Temperature Range - ± 5% (°C)	3.08 to 32.14								
Lowest Velocity Reading (m/s)	7.08								
Highest Velocity Reading (m/s)	8.98								
Ratio (less than 3:1)	1.27 : 1								
Pre-conditioning temperature of Filter (°C)	180								
Instack sampling - Max Filter temperature (°C)	18.1								
Post-conditioning temperature Filter/Wash (°C)	160								
Oxygen %	18.6								
Carbon Dioxide %			1.40						
Moisture (%)			4.16						
Litres sampled			1397						
Corrected volume sampled - STP (m³)			1.337						
Blank Filter Run weight gain (mg)	0.0)10	Blank Concentra			0.007			
Blank Wash Run weight gain (mg)	0.0)40	(mg/m ³			0.030			
Weighing uncertainty of balance (mg)	0.075	This must b	e <5% of ELV	ELV =	50	2.5			
Overall Blank value (mg/m³)	0.037	This must be	e <10% of ELV	ELV =	50	5.0			
Particulate weight collected on filter (mg)			0.10						
Particulate weight collected in Wash (mg)			1.69						
Total Particulate weight collected (mg)	1.79								
Total Particulate Concentration, *STP, dry gas (mg/m³)	1.34								
Total Particulate Concentration, *STP, wet gas (mg/m³)	1.28								
Total Particulate Concentration corrected for Oxygen, *STP, dry gas (mg/m³)	N/A								
Total Particulate Mass Emission (kg/hour)			0.000						

Redwing Environmental Ltd Appendix Page 6 of 45


Client	Terex									
Site Address	Coventry									
lob Number	P-RED14-001									
ate	23rd January 2014									
Operator(s)	Vicki Gavin & Tony Be	rek								
	1					mple Positions (%)	San	pling Plane Diagram	1	
Stack R	eference		Primer Flash Off		multiply by dian	neter to obtain sample points				
					1	14.60		Ĭ		
lumber of Stacks				1	2	85.40			Sample	
tack Configuratio	n		Ro	und	3	N/A	/		Line B	
imensions (mtrs)			0.	.80	4	N/A	-			
outlet Diameter (if	applicable) (metres)			5	N/A	\		/	
lumber of Sample	Ports			1	6	N/A		Sample		
lumber of Sample	s per Axis / Port			2	7	N/A		Sample Line A		
lozzle Diameter (r	nm)		8	3.0	8	N/A		$\overline{}$		
lozzle Area (m²)			0.000	005024				Axis 1	Axis 2	
tack Area (m²)			0.	503	Averag	ge Isokinetic Flow Ra	te (Itrs/min)	25.72	23.94	
itot Coefficient	0.84	Pitot C	alibration Due [Date		March 2014		Atmos. Pres	sure (kPa)	
Position	Distance	Axis 1	Temperature	Swirl Test	Axis 2	Temperature	Swirl Test	99.9)	
No.	(cms)	(pa)	(C)	Pass (Y/N)	(pa)	(C)	Pass (Y/N)	Static Pres	sure (pa)	
1	11.68	66	26.0	5.0	48	26.0	5	-11.	0	
2	68.32	54	26.0	4.0	56	26.0	3	1 Axis	2 Axis	
3	#VALUE!							Velocity of f	low (m/s)	
4	#VALUE!							8.53	7.94	
5	N/A							Volume Flow	Rate (m³/s)	
6	N/A							4.29	3.99	
7	N/A									
8	N/A							Reduce	d Exit	
Ave	rages	60	26.0		52	26.0		N/A		
lean Flue Gas Temi	p (in K) Tp = ((Mean T1	+ Mean T2\/2\+273\) =					299.0	0		
	rature readings ± 5% (°					11.05	to		40.95	
ighest Velocity Rea		=	, ,				9.2			
owest Velocity Rea		=					7.6			
	t (Max permitted = 3:1)							1.21 : 1		
				On eite	Checklist					
				Off Site	CHECKIST					
Range of	Gas Temps	ОК				Manometer Leak Ch	eck	ок		
nitial Leak Check	<0.2	Final leak check	<0.2			Pitot Leak Check		ок		
Acceptable Leak C	heck < 2% Vol (I/min)	0.51			Ovorall le	okinetic Ratio (%) (must	t bo 95 to 115%)	Run 1	Run 2	
Passed mini	imum Velocity require	ments (>5pa)	YES		Overall is	Carried Nado (10) (illust	25 55 10 115/0]	102.7	N/A	
Negative Loc	cal Flow Present, YES or N	IO (Yes = Fail)	NO		Are there sufficie	ent rails and kick board	? (YES , NO or N/A)		YES	
Is the Platform a	area greater than 5m ² ?	(YES, NO or N/A)	YES		Is the area infro	ont of the sample line th		+ 1 metre? (YES or	YES	
Passed	Highest to lowest Velo	ocity (3:1)	YES				NO)		, LJ	
				Site Equi	ipment Used					
Pitot Re	eference	RED 02	237			Manometer Referen	ice	RED 0	400	
	ter Reference	RED 03				Thermocouple Refere		RED 0		
	Reference									
		i .			Sampling Pump Reference RED 0385					

Stack Reference ID		Р	rimer Flash (Off					
	Тегех								
	RUN 1								
Filter Reference No	G47-200114-13								
Date	23rd January 2014								
Sample Period	12:55		to			13:55			
Velocity (m/s)	8.24								
Volumetric flowrate of Stack gas (m³/hr)	14906								
Average Stack Temp (°C)	26.0								
Temperature Range - ± 5% (°C)	11.05 to 40.95								
Lowest Velocity Reading (m/s)	7.63								
Highest Velocity Reading (m/s)			9.22						
Ratio (less than 3:1)	1.21 : 1								
Pre-conditioning temperature of Filter (°C)	180								
Instack sampling - Max Filter temperature (°C)	26.3								
Post-conditioning temperature Filter/Wash (°C)	160								
Oxygen %	18.6								
Carbon Dioxide %	1.40								
Moisture (%)			2.95						
Litres sampled			1523						
Corrected volume sampled - STP (m³)			1.454						
Blank Filter Run weight gain (mg)	0.0)10	Blank Concentra			0.007			
Blank Wash Run weight gain (mg)	0.0)40	(mg/m ³			0.028			
Weighing uncertainty of balance (mg)	0.074	This must b	e <5% of ELV	ELV =	50	2.5			
Overall Blank value (mg/m³)	0.034	This must be	e <10% of ELV	ELV =	50	5.0			
Particulate weight collected on filter (mg)			0.15						
Particulate weight collected in Wash (mg)			0.66						
Total Particulate weight collected (mg)	0.81								
Total Particulate Concentration, *STP, dry gas (mg/m³)	0.56								
Total Particulate Concentration, *STP, wet gas (mg/m³)	0.54								
Total Particulate Concentration corrected for Oxygen, *STP, dry gas (mg/m³)	N/A								
Total Particulate Mass Emission (kg/hour)			0.008						

Redwing Environmental Ltd Appendix Page 8 of 45

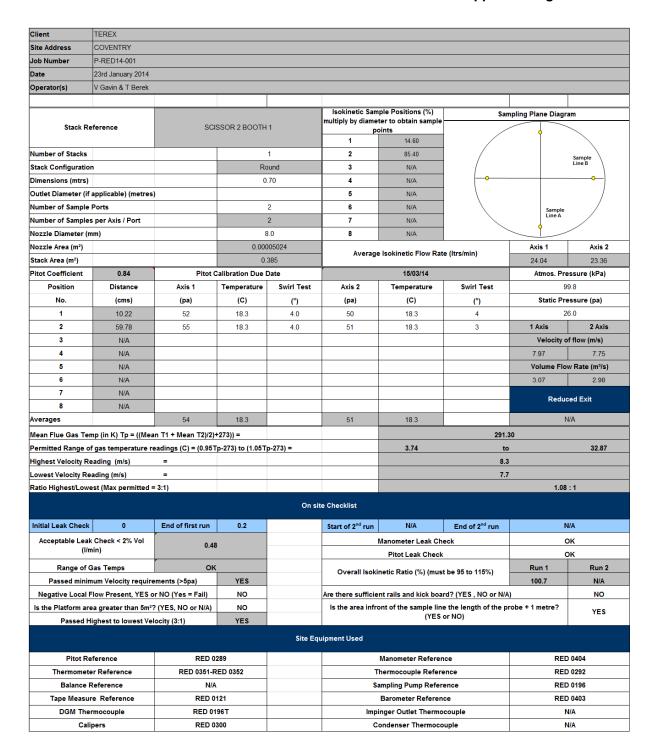
Stack Reference ID	SCISSOR 1 BOOTH 1							
	TEREX							
	RUN 1							
Filter Reference No	G47-200114-19							
Date	23rd January 2014							
Sample Period	08:50		to			09:50		
Velocity (m/s)		•	8.63					
Volume flow rate of Stack gas (m³/hr)			11950					
Average Stack Temp (°C)			18.2					
Temp Range ± 5% (°C)	3.64		to			32.76		
Lowest Velocity Reading (m/s)		'	8.42					
Highest Velocity Reading (m/s)			9.11					
Ratio (less than 3:1)	1.08		:			1		
Pre-conditioning temperature of Filter (°C)	180							
Instack sampling - Max Filter temperature (°C)	18.4							
Post-conditioning temperature Filter/Wash (°C)	160							
Oxygen %			18.8					
Carbon Dioxide %	0.90							
Moisture (%)			0.00					
Litres sampled			1518					
Corrected volume sampled - STP (m³)			1.466					
Blank Filter Run weight gain (mg)	0.0)10	Blank Concentra			0.007		
Blank Wash Run weight gain (mg)	0.2	210	(mg/m ³			0.143		
Weighing uncertainty of balance (mg)	0.074	This must be	e <5% of ELV	ELV =	50	2.5		
Overall Blank value (mg/m³)	0.150	This must be	<10% of ELV	ELV =	50	5.0		
Particulate weight collected on filter (mg)			0.04					
Particulate weight collected in Wash (mg)			0.82					
Total Particulate weight collected (mg)			0.86					
Total Particulate Concentration, dry gas at STP (mg/m³)	0.59							
Total Particulate Concentration, wet gas at STP (mg/m³)	0.59							
Total Particulate Concentration corrected for 11% Oxygen, dry gas (mg/m³)	N/A							
Total Particulate Mass Emission (kg/hour)			0.007					

Redwing Environmental Ltd Appendix Page 10 of 45

Client	TEREX								
Site Address	COVENTRY								
Job Number	P-RED14-001								
Date	23rd January 2014								
Operator(s)	V Gavin & T Berek								
operator(s)	V GAVIITA T BETER								
					Isokinetic San	nple Positions (%)	San	l npling Plane Diagra	m
Stack De	eference	SCI	SSOR 1 BOOTH	12	multiply by diame	eter to obtain sample	Jan	Ipining Flatie Diagra	
Stack Re	erence	301.	3301(1)	12	1 P	14.60		· •	
Number of Stacks				1	2	85.40			
Stack Configuration			D	ound	3	N/A	/		Sample Line B
Dimensions (mtrs)				0.70	4	N/A			
	applicable) (metres			1.10	5	N/A	\)
Number of Sample		,		2	6	N/A			
Number of Sample				2	7	N/A		Sample Line A	
				8.0	8	N/A		< • ·	
Nozzle Diameter (n Nozzle Area (m²)	,			005024	<u> </u>	IV/A		Axis 1	Axis 2
				.385	Averag	e Isokinetic Flow Rate	(Itrs/min)		
Stack Area (m²) Pitot Coefficient	0.84	Diana C	alibration Due			15/03/14		26.59 Atmos. Pre	26.90
Position				Swirl Test	Avia 0	T I	Swint Took		
	Distance	Axis 1	Temperature		Axis 2	Temperature	Swirl Test	99 Santin Dun	
No.	(cms)	(pa)	(C)	(°)	(pa)	(C)	(°)	Static Pre	
1	10.22	67	18.4	3.0	68	18.4	3	-36	
2	59.78	64	18.4	3.0	66	18.4	3	1 Axis	2 Axis
3	N/A							Velocity of	
4	N/A							8.82	8.92
5	N/A				-			Volume Flov	
6	N/A				-			3.40	3.43
7	N/A				-			Reduc	ed Exit
8	N/A								
Averages		66	18.4		67	18.4		N.	'A
Mean Flue Gas Ter	mp (in K) Tp = ((Mea	ın T1 + Mean T2)/2)+	-273)) =				291.4	10	
Permitted Range o	f gas temperature r	eadings (C) = (0.95T	p-273) to (1.05T	p-273) =		3.83	to		32.97
Highest Velocity Re	eading (m/s)	=					9.2		
Lowest Velocity Re		=					8.7		
Ratio Highest/Lowe	est (Max permitted =	= 3:1)						1.06	:1
				On si	ite Checklist				
Initial Leak Check	0	End of first run	0.2		Canada a cond		End of Old		
		Life of Hist run	0.2		Start of 2 nd run		End of 2 nd run		
	c Check < 2% Vol nin)	0.53				Manometer Leak Che Pitot Leak Check	CK	0	
Range of 0	Gas Temps	ок			Overall leak	inetic Ratio (%) (must	he 95 to 115%)	Run 1	Run 2
Passed minin	num Velocity require	ements (>5pa)	YES		O VETAII 130K			95.8	N/A
Negative Local F	Flow Present, YES o	r NO (Yes = Fail)	NO		Are there sufficie	ent rails and kick boar	? (YES , NO or N/A)	NO
Is the Platform are	ea greater than 5m²1	(YES, NO or N/A)	NO		Is the area infr	ont of the sample line		robe + 1 metre?	YES
Passed H	lighest to lowest Ve	locity (3:1)	YES		(YES or NO)				.20
				Site Eq	uipment Used				
Pitot Pa	eference	RED 0	289		Manometer Reference RED 0404				0404
	er Reference	RED 0351-R			-	Thermocouple Refere			0292
	Reference	N/A				iampling Pump Refere			0196
	re Reference	RED 0				Barometer Reference			0403
	rmocouple	RED 01			Imr	inger Outlet Thermoo			/A
	pers	RED 01				Condenser Thermocou			/A
Call	heip	KED 0	,,,,		1	ondenser Thermocol	ihie	N	in .

Stack Reference ID	SCISSOR 1 BOOTH 2							
	TEREX							
	RUN 1							
Filter Reference No	G47-200114-21							
Date	23rd January 2014							
Sample Period	08:50		to			09:50		
Velocity (m/s)			8.87					
Volume flow rate of Stack gas (m³/hr)			12292					
Average Stack Temp (°C)			18.4					
Temp Range ± 5% (°C)	3.83		to			32.97		
Lowest Velocity Reading (m/s)		·	8.70					
Highest Velocity Reading (m/s)			9.25					
Ratio (less than 3:1)	1.06		:			1		
Pre-conditioning temperature of Filter (°C)	180							
Instack sampling - Max Filter temperature (°C)	18.5							
Post-conditioning temperature Filter/Wash (°C)	160							
Oxygen %	18.9							
Carbon Dioxide %	0.60							
Moisture (%)			0.00					
Litres sampled			1530					
Corrected volume sampled - STP (m³)			1.467					
Blank Filter Run weight gain (mg)	0.0	000	Blank Concentra			0.000		
Blank Wash Run weight gain (mg)	0.0	50	(mg/m ³			0.034		
Weighing uncertainty of balance (mg)	0.074	This must be	e <5% of ELV	ELV=	50	2.5		
Overall Blank value (mg/m³)	0.034	This must be	<10% of ELV	ELV=	50	5.0		
Particulate weight collected on filter (mg)			0.06					
Particulate weight collected in Wash (mg)			0.71					
Total Particulate weight collected (mg)			0.77					
Total Particulate Concentration, dry gas at STP (mg/m³)	0.52							
Total Particulate Concentration, wet gas at STP (mg/m³)	0.52							
Total Particulate Concentration corrected for 11% Oxygen, dry gas (mg/m³)	6 N/A							
Total Particulate Mass Emission (kg/hour)			0.525					

Redwing Environmental Ltd Appendix Page 12 of 45


Client	TEREX								
Site Address	COVENTRY								
lob Number	P-RED14-001								
Date	23rd January 2014								
Operator(s)	V Gavin & T Berek								
,								T	
					Isokinetic Sar	mple Positions (%)	Sam	pling Plane Diagra	m
Stack Re	eference	SC	CISSOR 1 OVEN	J		eter to obtain sample			
otaon ite			JIOOOTT T OVER	•	1	50.00		Ŷ	
lumber of Stacks				1	2	N/A			
tack Configuration			P	ound	3	N/A	/		Sample Line B
imensions (mtrs)				0.20	4	N/A			
	annliaghle) (matros		,	5.20	5	N/A	(
	applicable) (metres)		4			\		
umber of Sample				1	6	N/A		Sample Line A	
umber of Sample				1	7	N/A		,	
ozzle Diameter (n	nm)			8.0	8	N/A			
lozzle Area (m²)				005024	4	n		Axis 1	Axis 2
tack Area (m²)				.031				20.11	N/A
itot Coefficient	0.84		alibration Due			15/03/14		Atmos. Pre	
Position	Distance	Axis 1	Temperature	Swirl Test	Axis 2	Temperature	Swirl Test	99	
No.	(cms)	(pa)	(C)	(°)	(pa)	(C)	(°)		ssure (pa)
1	10.00	30	91.2	7.0				3.	0
2	#VALUE!							1 Axis	2 Axis
3	N/A							Velocity of	flow (m/s)
4	N/A							6.67	N/A
5	N/A							Volume Flow	/ Rate (m³/s)
6	N/A							0.21	N/A
7	N/A							Reduc	ad Evit
8	N/A							Reduct	eu Exit
verages		30	91.2					N	'A
lean Flue Gas Ter	mp (in K) Tp = ((Mea	ın T1 + Mean T2)/2)+	+273)) =				364.2	0	
	f gas temperature re			Гр-273) =		72.99	to		109.41
lighest Velocity Re		=					6.9		
owest Velocity Re		=					6.7		
	est (Max permitted =	= 3:1)						1.03 :	:1
				On s	ite Checklist				
nitial Leak Check	<0.2	End of first run	<0.2		Start of 2 nd run	N/A	End of 2 nd run	N	'A
Acceptable Leal	Check < 2% Vol					Manometer Leak Che		0	К
	nin)	0.40				Pitot Leak Check		0	
Range of 0	Gas Temps	ОК						Run 1	Run 2
	num Velocity require		YES		Overall Isok	rinetic Ratio (%) (must	be 95 to 115%)	99.4	N/A
	Flow Present, YES o		NO		Are there suffici	ent rails and kick boar	d2 (YES NO or N/A)		NO
_	ea greater than 5m²		NO			ront of the sample line			
	_		YES		is the area iiii	(YES o		obe : i metre:	YES
rassed H	lighest to lowest Ve	ocity (3.1)	123						
				Site Eq	uipment Used				
Pitot Da	eference	RED 02	289			Manometer Referen	re .	DED	0404
	er Reference	RED 0351-R			-	Thermocouple Refere			0292
				-		·		RED	
	Reference	N/A		-	+ **	Sampling Pump Refere			
	re Reference	RED 01			+	Barometer Reference		RED	
	rmocouple	RED 01			+	pinger Outlet Thermoo	•	N.	
Cali	pers	RED 03	300		(Condenser Thermoco	upie	N	/A

Stack Reference ID	SCISSOR 1 OVEN							
	TEREX							
	RUN 1							
Filter Reference No	G47-200114-27							
Date	23rd January 2014							
Sample Period	13:02		to			14:02		
Velocity (m/s)			6.67					
Volume flow rate of Stack gas (m³/hr)			755					
Average Stack Temp (°C)			91.2					
Temp Range ± 5% (°C)	72.99		to			109.41		
Lowest Velocity Reading (m/s)		'	6.66					
Highest Velocity Reading (m/s)			6.87					
Ratio (less than 3:1)	1.03 : 1							
Pre-conditioning temperature of Filter (°C)	180							
Instack sampling - Max Filter temperature (°C)	91.7							
Post-conditioning temperature Filter/Wash (°C)	160							
Oxygen %	19.5							
Carbon Dioxide %			0.60					
Moisture (%)			0.00					
Litres sampled			1010					
Corrected volume sampled - STP (m³)			0.956					
Blank Filter Run weight gain (mg)	0.0)10	Blank Concentra			0.010		
Blank Wash Run weight gain (mg)	0.0)50	(mg/m ³			0.052		
Weighing uncertainty of balance (mg)	0.074	This must be	e <5% of ELV	ELV =	50	2.5		
Overall Blank value (mg/m³)	0.063	This must be	<10% of ELV	ELV =	50	5.0		
Particulate weight collected on filter (mg)			0.07					
Particulate weight collected in Wash (mg)			0.80					
Total Particulate weight collected (mg)			0.87					
Total Particulate Concentration, dry gas at STP (mg/m³)	0.91							
Total Particulate Concentration, wet gas at STP (mg/m³)	0.91							
Total Particulate Concentration corrected for 11% Oxygen, dry gas (mg/m³)	N/A							
Total Particulate Mass Emission (kg/hour)			0.910					

Redwing Environmental Ltd Appendix Page 14 of 45

Stack Reference ID	SCISSOR 2 BOOTH 1							
	TEREX							
	RUN 1							
Filter Reference No	G47-200114-23							
Date	23rd January 2014							
Sample Period	10:55		to			11:55		
Velocity (m/s)		•	7.86					
Volume flow rate of Stack gas (m³/hr)			10891					
Average Stack Temp (°C)			18.3					
Temp Range ± 5% (°C)	3.74		to			32.87		
Lowest Velocity Reading (m/s)		,	7.69					
Highest Velocity Reading (m/s)			8.32					
Ratio (less than 3:1)	1.08		:			1		
Pre-conditioning temperature of Filter (°C)	180							
Instack sampling - Max Filter temperature (°C)	18.4							
Post-conditioning temperature Filter/Wash (°C)	160							
Oxygen %			19.2					
Carbon Dioxide %	0.40							
Moisture (%)			0.00					
Litres sampled			1448					
Corrected volume sampled - STP (m³)			1.388					
Blank Filter Run weight gain (mg)	0.0	000	Blank Concentra			0.000		
Blank Wash Run weight gain (mg)	0.0)10	(mg/m ³			0.007		
Weighing uncertainty of balance (mg)	0.075	This must b	e <5% of ELV	ELV =	50	2.5		
Overall Blank value (mg/m³)	0.007	This must be	<20% of ELV	ELV =	50	10.0		
Particulate weight collected on filter (mg)			0.02					
Particulate weight collected in Wash (mg)			1.53					
Total Particulate weight collected (mg)			1.55					
Total Particulate Concentration, dry gas at STP (mg/m³)	1.12							
Total Particulate Concentration, wet gas at STP (mg/m³)			1.12					
Total Particulate Concentration corrected for 11% Oxygen, dry gas (mg/m³)	% N/A							
Total Particulate Mass Emission (kg/hour)			0.012					

Redwing Environmental Ltd Appendix Page 16 of 45

Client	TEREX								
Site Address	COVENTRY								
Job Number	P-RED14-001								
Date	23rd January 2014								
Operator(s)	V Gavin & T Berek								
operator(s)	V GAVIITA T BETER			Π					
					Isokinetic Sar	nple Positions (%)	San	pling Plane Diagra	m
Stack D	eference	SCI	SSOR 2 BOOTH	12	multiply by diame	eter to obtain sample	Saii	ipining Flanie Diagra	
Stack Re	erence	301.	3301(2,50011)	12	1 F	14.60		· •	
Number of Stacks				1	2	85.40			
Stack Configuratio	_		D	ound	3	N/A	/		Sample Line B
Dimensions (mtrs)				0.70	4	N/A			
	applicable) (metres	\		0.70	5	N/A	\)
)		2	6	N/A			
Number of Sample				2	7			Sample Line A	
Number of Sample						N/A		. •	
Nozzle Diameter (n	,			8.0	8	N/A		Aui- 4	Au!- 0
Nozzle Area (m²)				005024	Averag	e Isokinetic Flow Rate	(Itrs/min)	Axis 1	Axis 2
Stack Area (m²)	0.04	Bis : 6		385		45/00/44		23.28	23.28
Pitot Coefficient	0.84		alibration Due		A. 1 . 0	15/03/14	etal T ·	Atmos. Pre	
Position	Distance	Axis 1	Temperature	Swirl Test	Axis 2	Temperature	Swirl Test	99	
No.	(cms)	(pa)	(C)	(°)	(pa)	(C)	(°)	Static Pre	
1	10.22	51	18.3	5.0	52	18.3	5	21	
2	59.78	51	18.3	6.0	50	18.3	4	1 Axis	2 Axis
3	N/A							Velocity of	
4	N/A							7.72	7.72
5	N/A							Volume Flov	
6	N/A							2.97	2.97
7	N/A							Reduc	ed Exit
8	N/A								
Averages		51	18.3		51	18.3		N.	<u>'A</u>
Mean Flue Gas Te	mp (in K) Tp = ((Mea	ın T1 + Mean T2)/2)+	273)) =				291.3	30	
Permitted Range o	f gas temperature re	eadings (C) = (0.95T	p-273) to (1.05T	p-273) =		3.74	to		32.87
Highest Velocity R	eading (m/s)	=					8.1		
Lowest Velocity Re	ading (m/s)	=					7.7		
Ratio Highest/Low	est (Max permitted =	= 3:1)						1.05	:1
				On si	ite Checklist				
Initial Leak Check		End of first run	0.2		Start of 2 nd run		End of 2 nd run		
	c Check < 2% Vol nin)	0.47				Manometer Leak Che Pitot Leak Check	ck	0	
Range of (Gas Temps	ок			Overall Isok	inetic Ratio (%) (must	be 95 to 115%)	Run 1	Run 2
Passed minin	num Velocity require	ements (>5pa)	YES		2.crum 130k			100.0	N/A
Negative Local I	Flow Present, YES o	r NO (Yes = Fail)	NO		Are there sufficient	ent rails and kick board	d? (YES , NO or N/A)	NO
Is the Platform are	ea greater than 5m²1	(YES, NO or N/A)	NO		Is the area infr	ont of the sample line		obe + 1 metre?	YES
Passed H	lighest to lowest Vel	locity (3:1)	YES		(YES or NO)				
				Site Eq	uipment Used				
Pitot Re	eference	RED 0	289		Manometer Reference RED 0404				0404
	er Reference	RED 0351-R			Thermocouple Reference RED 0292				
	Reference	N/A				Sampling Pump Refere		RED	
	re Reference	RED 0	121			Barometer Reference		RED	
	rmocouple	RED 01			Imr	inger Outlet Thermod		N	
	pers	RED 0				Condenser Thermocou			/A
- Juli	p						A	"	••

Stack Reference ID	SCISSOR 2 BOOTH 2							
	TEREX							
	RUN 1							
Filter Reference No	G47-200114-25							
Date	23rd January 2014							
Sample Period	12:00		to			13:00		
Velocity (m/s)		•	7.72					
Volume flow rate of Stack gas (m³/hr)			10699					
Average Stack Temp (°C)			18.3					
Temp Range ± 5% (°C)	3.74		to			32.87		
Lowest Velocity Reading (m/s)		'	7.69					
Highest Velocity Reading (m/s)			8.09					
Ratio (less than 3:1)	1.05		:			1		
Pre-conditioning temperature of Filter (°C)	180							
Instack sampling - Max Filter temperature (°C)	18.4							
Post-conditioning temperature Filter/Wash (°C)	160							
Oxygen %			10.4					
Carbon Dioxide %	5.60							
Moisture (%)			0.00					
Litres sampled			1403					
Corrected volume sampled - STP (m³)			1.342					
Blank Filter Run weight gain (mg)	0.0)50	Blank Concentra			0.037		
Blank Wash Run weight gain (mg)	0.0)20	(mg/m ³			0.015		
Weighing uncertainty of balance (mg)	0.074	This must be	e <5% of ELV	ELV =	50	2.5		
Overall Blank value (mg/m³)	0.052	This must be	<10% of ELV	ELV =	50	5.0		
Particulate weight collected on filter (mg)			0.15					
Particulate weight collected in Wash (mg)			1.00					
Total Particulate weight collected (mg)			1.15					
Total Particulate Concentration, dry gas at STP (mg/m³)	0.86							
Total Particulate Concentration, wet gas at STP (mg/m³)			0.86					
Total Particulate Concentration corrected for 11% Oxygen, dry gas (mg/m³)	N/A							
Total Particulate Mass Emission (kg/hour)			0.009					

Redwing Environmental Ltd Appendix Page 18 of 45

Client	TEREX									
Site Address	COVENTRY									
Job Number	P-RED14-001									
Date	23rd January 2014									
Operator(s)	V Gavin & T Berek									
operator(s)	V GAVIITA T BETER									
					Isokinetic Sar	mple Positions (%)	Sam	npling Plane Diagra	ım	
Stack Re	oforonoo	90	CISSOR 2 OVEN		multiply by diam	eter to obtain sample	Jan	ipining Flanie Diagra		
Stack Re	erence	30	JISSON Z OVLIN		1	50.00		· •		
Nih - n - f Ct l -				1	2	N/A				
Number of Stacks	_			ound	3	N/A	/		Sample Line B	
Stack Configuration	n 									
Dimensions (mtrs)			U	.20	5	N/A	\			
	applicable) (metres			4		N/A	\			
Number of Sample				1	6	N/A		Sample Line A		
Number of Samples				1	7	N/A				
Nozzle Diameter (n	nm)			8.0	8	N/A		1		
Nozzle Area (m²)				005024	Averag	ge Isokinetic Flow Rate	(Itrs/min)	Axis 1	Axis 2	
Stack Area (m²)				031				16.71	N/A	
Pitot Coefficient	0.84		alibration Due I			15/03/14		Atmos. Pre		
Position	Distance	Axis 1	Temperature	Swirl Test	Axis 2	Temperature	Swirl Test		9.8	
No.	(cms)	(pa)	(C)	(°)	(pa)	(C)	(°)	Static Pre		
1	10.00	21	85.7	4.0					.0	
2	#VALUE!							1 Axis	2 Axis	
3	N/A							Velocity of	flow (m/s)	
4	N/A							5.54	N/A	
5	N/A							Volume Flov	v Rate (m³/s)	
6	N/A							0.17	N/A	
7	N/A							Reduc	ed Exit	
8	N/A									
Averages		21	85.7					N.	/A	
Mean Flue Gas Ter	mp (in K) Tp = ((Mea	n T1 + Mean T2)/2)+	-273)) =				358.70			
Permitted Range o	f gas temperature re	eadings (C) = (0.95T	p-273) to (1.05T	p-273) =		67.77 to			103.64	
Highest Velocity Re	eading (m/s)	=					5.7			
Lowest Velocity Re	ading (m/s)	=					5.5			
Ratio Highest/Lowe	est (Max permitted =	= 3:1)						1.03	:1	
				On si	ite Checklist					
				- 0// 3/	JII JI					
Initial Leak Check	0	End of first run	0		Start of 2 nd run		End of 2 nd run			
•	Check < 2% Vol	0.33				Manometer Leak Che	ck	0	К	
(I/n	nin)	0.00				Pitot Leak Check		0	К	
Range of 0	Gas Temps	ок			Overall lead	rinetic Ratio (%) (must	be 95 to 115%)	Run 1	Run 2	
Passed minin	num Velocity require	ements (>5pa)	YES		O VETAII ISUI	(/// (// () // () // () // (// (// (// (// (//))))		100.3	#DIV/0!	
Negative Local F	Flow Present, YES o	r NO (Yes = Fail)	NO		Are there suffici	ent rails and kick boar	d? (YES , NO or N/A)	NO	
Is the Platform are	ea greater than 5m²?	(YES, NO or N/A)	NO		Is the area inf	ront of the sample line		obe + 1 metre?	YES	
Passed H	lighest to lowest Ve	locity (3:1)	YES			(YES o	r NO)		123	
				Site Eq	uipment Used					
Pitot Pa	eference	RED 0	289		Manometer Reference			DED	0404	
	er Reference	RED 0351-R							0292	
	Reference					Thermocouple Refere				
	re Reference	N/A			-	Sampling Pump Refere		RED 0196		
•		RED 0			1	Barometer Reference			RED 0403 N/A	
	rmocouple	RED 01				pinger Outlet Thermod				
Calipers		RED 0	300		1	Condenser Thermocou	ipie	N	/A	

Stack Reference ID	SCISSOR 2 OVEN								
	TEREX								
	RUN 1								
Filter Reference No	G47-200114-29								
Date	23rd January 2014								
Sample Period	14:05		to			15:05			
Velocity (m/s)			5.54						
Volume flow rate of Stack gas (m³/hr)			627						
Average Stack Temp (°C)			85.7						
Temp Range ± 5% (°C)	67.77		to			103.64			
Lowest Velocity Reading (m/s)		'	5.53						
Highest Velocity Reading (m/s)			5.70						
Ratio (less than 3:1)	1.03		:			1			
Pre-conditioning temperature of Filter (°C)	180								
Instack sampling - Max Filter temperature (°C)	86.4								
Post-conditioning temperature Filter/Wash (°C)	160								
Oxygen %	19.3								
Carbon Dioxide %	0.40								
Moisture (%)	0.00								
Litres sampled	1012								
Corrected volume sampled - STP (m³)	0.955								
Blank Filter Run weight gain (mg)	0.010		Blank Concentration		0.010				
Blank Wash Run weight gain (mg)	0.0	0.030)		0.031			
Weighing uncertainty of balance (mg)	0.074	This must be	e <5% of ELV	ELV =	50	2.5			
Overall Blank value (mg/m³)	0.042	This must be	<10% of ELV	ELV =	50	5.0			
Particulate weight collected on filter (mg)	0.15								
Particulate weight collected in Wash (mg)	0.87								
Total Particulate weight collected (mg)	1.02								
Total Particulate Concentration, dry gas at STP (mg/m³)	1.07								
Total Particulate Concentration, wet gas at STP (mg/m³)	1.07								
Total Particulate Concentration corrected for 11% Oxygen, dry gas (mg/m³)	N/A								
Total Particulate Mass Emission (kg/hour)			0.001						

Redwing Environmental Ltd Appendix Page 20 of 45

Client	TEREX								
Site Address	COVENTRY								
Job Number	P-RED14-001								
Date	22nd January 2014								
Operator(s)	V Gavin & T Berek								
								I	
						ple Positions (%)	Sam	ıpling Plane Diagra	m
Stack Re	eference	Sp	ray Bake Booth 1			ter to obtain sample pints			
					1	14.60		Ĭ	
Number of Stacks				1	2	85.40			Sample
Stack Configuration	n		Ro	und	3	N/A	/		Line B
Dimensions (mtrs)			0.	80	4	N/A	-		<u> </u>
Outlet Diameter (if	applicable) (metres)			5	N/A	\		/
Number of Sample	Ports			2	6	N/A		Sample Line A	
Number of Samples				2	7	N/A		Lille A	
Nozzle Diameter (n	nm)			.0	8	N/A			
Nozzle Area (m²)				02826	Average	Isokinetic Flow Rate	(Itrs/min)	Axis 1	Axis 2
Stack Area (m²)				503				21.17	21.33
Pitot Coefficient	0.84		alibration Due [15/03/14		Atmos. Pres	
Position	Distance	Axis 1	Temperature	Swirl Test	Axis 2	Temperature	Swirl Test	10°	
No.	(cms)	(pa)	(C)	(°)	(pa)	(C)	(°)	Static Pre	
1	11.68	129	26.8	4.0	133	26.8	4	24	
3	68.32	131	26.9	3.0	131	27.1	5	1 Axis	2 Axis
	N/A							Velocity of	
5	N/A							12.48 Volume Flow	12.58
6	N/A N/A							6.28	6.32
7	N/A							0.28	0.32
8	N/A							ed Exit	
Averages		130	26.9		132	27.0	N/A		A
Mean Flue Gas Ter	mp (in K) Tp = ((Mea	n T1 + Mean T2)/2)+	·273)) =				299.8	5	
Permitted Range o	f gas temperature re	eadings (C) = (0.95T	p-273) to (1.05T _]	o-273) =		11.86 to			41.84
Highest Velocity Re	eading (m/s)	=				13.0			
Lowest Velocity Re	ading (m/s)	=					12.4		
Ratio Highest/Lowe	est (Max permitted =	3:1)						1.05	1
				On si	te Checklist				
Initial Leak Check		End of first run			Start of 2 nd run		End of 2 nd run		
	Check < 2% Vol					Manometer Leak Che		0	K
	nin)	0.42				Pitot Leak Check		0	
Range of 0	Gas Temps	ОК			Overall Isokii	netic Ratio (%) (must	be 95 to 115%)	Run 1	Run 2
Passed minin	num Velocity require	ments (>5pa)	YES		O VETAII ISONII	(/// (/// (/// (/// (/// (/// (/// (/// (/// (/// (/// (/// (/// (/// (/// (// (// (// () // (/)))))))		100.0	N/A
Negative Local F	Flow Present, YES o	r NO (Yes = Fail)	NO		Are there sufficie	nt rails and kick boar	d? (YES , NO or N/A))	NO
Is the Platform area greater than 5m²? (YES, NO or N/A)			NO		Is the area infro	ont of the sample line (YES o		obe + 1 metre?	YES
Passed H	lighest to lowest Vel	ocity (3:1)	YES			(YES O	PNO)		
				Site Eq	uipment Used				
Pitot Reference RED 0290					Manometer Reference			RED	0393
Thermomete	er Reference	RED 0351-R	ED 0352		Т	hermocouple Refere	nce	RED	0362
Balance F	Reference	N/A				ampling Pump Refere		RED	0258
Tape Measu	re Reference	RED 01	23			Barometer Reference	e	RED	0094
DGM The	rmocouple	RED 03	195		lmpi	Impinger Outlet Thermocouple N/A			Α
Calipers RE			300		C	ondenser Thermocou	ıple	N	A

Stack Reference ID	Spray Bake Booth 1							
	TEREX							
	RUN 1							
Filter Reference No	ISOCYANATES NCO							
Date	22nd January 2014							
Sample Period	10:30		to			11:30		
Velocity (m/s)		•	12.53					
Volume flow rate of Stack gas (m³/hr)			22677					
Average Stack Temp (°C)			26.9					
Temp Range ± 5% (°C)	11.86		to			41.84		
Lowest Velocity Reading (m/s)		,	12.40					
Highest Velocity Reading (m/s)	12.99							
Ratio (less than 3:1)	1.05 : 1					1		
Pre-conditioning temperature of Filter (°C)	180							
Instack sampling - Max Filter temperature (°C)	27.8							
Post-conditioning temperature Filter/Wash (°C)	160							
Oxygen %	18.8							
Carbon Dioxide %			0.60					
Moisture (%)	0.00							
Litres sampled	1257							
Corrected volume sampled - STP (m³)	1.225							
Blank Filter Run weight gain (mg)	0.0	000	Blank		0.000			
Blank Wash Run weight gain (mg)	0.0	000	Concentra (mg/m³			0.000		
Weighing uncertainty of balance (mg)	0.074	This must b	e <5% of ELV	ELV =	0.1	0.01		
Overall Blank value (mg/m³)	0.000	This must be <10% of ELV		ELV =	0.1	0.01		
Isocyanate weight collected on filter (mg)	0.02							
Total Isocyanate Concentration, dry gas at STP (mg/m³)	0.02							
Total Isocyanate Concentration, wet gas at STP (mg/m³)	P 0.02							
Total Isocyanate Mass Emission (kg/hour)		0.0004						

Redwing Environmental Ltd Appendix Page 22 of 45

Client	TEREX									
Site Address	COVENTRY									
Job Number	P-RED14-001									
Date	22nd January 2014									
Operator(s)	V Gavin & T Berek									
								I		
Stack Reference		SPRAYE	/BAKE BOOTH 2 (NCO)		Isokinetic Sample Positions (%) multiply by diameter to obtain sample points		Sampling Plane		Diagram	
					1	14.60				
Number of Stacks				1	2	85.40			Sample Line B	
Stack Configuration	n			und	3	N/A				
Dimensions (mtrs)			0.	80	4	N/A				
	applicable) (metres)			5	N/A	\			
Number of Sample				2	6	N/A		Sample Line A		
Number of Samples				2	7	N/A				
Nozzle Diameter (n	nm)			0.00	8	N/A		1		
Nozzle Area (m²)				02826	Average	Isokinetic Flow Rate	(Itrs/min)	Axis 1	Axis 2	
Stack Area (m²)	0.04	Bis	alibration Due [503	1	15/03/14		20.65	20.65	
Pitot Coefficient	0.84				Auto 0		Codel Total	Atmos. Pre		
Position	Distance	Axis 1	Temperature	Swirl Test	Axis 2	Temperature	Swirl Test	100 Statia Dan		
No.	(cms)	(pa)	(C)	(°)	(pa)	(C)	(°) 3	Static Pre		
2	11.68	124	26.0 25.9	5.0 4.0	128 122	25.9 26.2	5	1 Axis	2 Axis	
3	68.32	126	25.9	4.0	122	26.2	5			
4	N/A N/A							Velocity of	12.18	
5	N/A N/A							Volume Flow		
6	N/A							6.12	6.12	
7	N/A							0.12	0.12	
8	N/A								ed Exit	
Averages		125	26.0		125	26.1	N/A		A	
Mean Flue Gas Ter	mp (in K) Tp = ((Mea	n T1 + Mean T2)/2)+	273)) =				298.9	15		
	f gas temperature re			o-273) =		11.00	to		40.90	
Highest Velocity Re		=	, ,			12.8				
Lowest Velocity Re		=					12.1			
Ratio Highest/Lowe	est (Max permitted =	: 3:1)						1.06	1	
				On si	te Checklist					
Initial Leak Check	0.2	End of first run	0.2		Start of 2 nd run		End of 2 nd run			
Acceptable Leak	Check < 2% Vol	0.41				Manometer Leak Che		0	К	
(I/n	nin)	0.41				Pitot Leak Check		0	к	
Range of 0	Gas Temps	ок			Overall Isokii	netic Ratio (%) (must	be 95 to 115%)	Run 1	Run 2	
Passed minin	num Velocity require	ements (>5pa)	YES		O VETAII ISONII	rado (70) (must	22 23 10 11070,	102.2	N/A	
Negative Local F	low Present, YES o	r NO (Yes = Fail)	NO		Are there sufficie	nt rails and kick board	d? (YES , NO or N/A))	NO	
Is the Platform are	ea greater than 5m²?	(YES, NO or N/A)	NO		Is the area infro	ont of the sample line		obe + 1 metre?	YES	
Passed H	ighest to lowest Vel	ocity (3:1)	YES			(YES o	r NO)			
				Site Eq	uipment Used					
Pitot Reference RED 0290			290		Manometer Reference			RED	0393	
Thermomete	er Reference	RED 0351-R	ED 0352		Т	hermocouple Refere	nce	RED	0362	
Balance F	Reference	N/A			Sa	ampling Pump Refere	nce	RED	0258	
Tape Measur	re Reference	RED 01	23			Barometer Reference	e	RED	0094	
DGM The	rmocouple	RED 03	195		lmpi	inger Outlet Thermod	ouple	N	Α	
Cali	pers	RED 03	300		C	ondenser Thermocou	ıple	N	Α	

Stack Reference ID	SPRAYBAKE BOOTH 2 (NCO)								
	TEREX								
	RUN 1								
Filter Reference No	ISOCYANATES NCO								
Date	22nd January 2014								
Sample Period	12:40 to 13:40								
Velocity (m/s)		•	12.18						
Volume flow rate of Stack gas (m³/hr)			22041						
Average Stack Temp (°C)			26.0						
Temp Range ± 5% (°C)	11.00		to			40.90			
Lowest Velocity Reading (m/s)		•	12.10						
Highest Velocity Reading (m/s)	12.78								
Ratio (less than 3:1)	1.06		:			1			
Pre-conditioning temperature of Filter (°C)	180								
Instack sampling - Max Filter temperature (°C)	26.7								
Post-conditioning temperature Filter/Wash (°C)	160								
Oxygen %	10.4								
Carbon Dioxide %	5.60								
Moisture (%)	0.00								
Litres sampled	1286								
Corrected volume sampled - STP (m³)			1.236						
Blank Filter Run weight gain (mg)	0.0	000	Blank Concentra			0.000			
Blank Wash Run weight gain (mg)	0.0	000	(mg/m ³			0.000			
Weighing uncertainty of balance (mg)	0.074	This must l	be <5% of ELV	ELV=	0.1	0.01			
Overall Blank value (mg/m³)	0.000	0.000 This must be <10% of ELV ELV =				0.01			
Isocyanate weight collected on filter (mg)	0.02								
Total Isocyanate weight collected (mg)	0.02								
Total Isocyanate Concentration, dry gas at STP (mg/m³)	0.02								
Total Isocyanate Concentration, wet gas at STP (mg/m³)	0.02								
Total Isocyanate Mass Emission (kg/hour)	0.0004								

Redwing Environmental Ltd Appendix Page 24 of 45

Client	Terex												
Site Address	Coventry												
lob Number	P-RED14-001												
)ate	22nd January 2014												
Operator(s)	Vicki Gavin & Tony Be	rek											
	1					mple Positions (%)	San	pling Plane Diagram	1				
Stack R	eference	1	Topcoat Flashoff		multiply by dian	neter to obtain sample points							
					1	14.60		Ĭ					
lumber of Stacks				1	2	85.40			Sample				
tack Configuratio	n		Ro	ound	3	N/A	/		Line B				
imensions (mtrs)			1.	.00	4	N/A	-		\				
	applicable) (metres)			5	N/A	\		/				
lumber of Sample				1	6	N/A		Sample					
lumber of Sample				2	7	N/A		Sample Line A					
lozzle Diameter (r	nm)		6	5.0	8	N/A		<u> </u>					
lozzle Area (m²)				002826				Axis 1	Axis 2				
Stack Area (m²)			0.	785	Averag	ge Isokinetic Flow Ra	te (Itrs/min)	19.41	20.18				
itot Coefficient	0.84	Pitot C	alibration Due [March 2014		Atmos. Pres					
Position	Distance	Axis 1	Temperature	Swirl Test	Axis 2	Temperature	Swirl Test	100.					
No.	(cms)	(pa)	(C)	Pass (Y/N)	(pa)	(C)	Pass (Y/N)	Static Pres	sure (pa)				
1	14.60	102	55.0	5.0	112	55.0	6	-80.					
2	85.40	97	55.0	5.0	103	55.0	3	1 Axis	2 Axis				
3	N/A							Velocity of f					
4	N/A							11.45	11.90				
5	N/A							Volume Flow					
6	N/A							8.99	9.35				
7	N/A												
8	N/A							Reduce	d Exit				
	rages	100	55.0		108	55.0		N/A					
	p (in K) Tp = ((Mean T1						328.0	<u>U</u>	74.40				
	rature readings ± 5% (°	C) = (0.951p-2/3) to (1.	051p-2/3) =			38.60	to		71.40				
ighest Velocity Rea owest Velocity Rea		=					12.5						
							11.3						
atio Highest/Lowes	t (Max permitted = 3:1)							1.11 : 1					
				On site	Checklist								
Danna of	Can Taman	ОК				Manometer Leak Ch		OK					
nitial Leak Check	Gas Temps <0.2	Final leak check	<0.2			Pitot Leak Check		OK					
	heck < 2% Vol (I/min)	0.39						Run 1	Run 2				
	imum Velocity require		YES		Overall Is	okinetic Ratio (%) (mus	t be 95 to 115%)	106.3	98.2				
			NO NO		A 4b #6:-:-		2 (VEC. NO N/A)	100.5					
	cal Flow Present, YES or I		YES			ent rails and kick board ont of the sample line tl		1 motro? /VEC or	YES				
	area greater than 5m ² ?		YES		is the area intro		NO)	· I mede: (TES OF	YES				
Passed	Highest to lowest Velo	ску (3:1)	162	Site Equi	ipment Used								
Pitot R	eference	RED 02	237			Manometer Referen	ice	RED 0	400				
	ter Reference	RED 03				Thermocouple Refere		RED 0					
Balance	Reference				1	Sampling Pump Refer	ence	Sampling Pump Reference RED 0385					

Stack Reference ID			То	pcoat	Flash	off			
				Te	rex				
		RUN 1			RUN 2				
Filter Reference No	G47	-200114	4-01			N	NCO Run		
Date	22nd	January	y 2014			22nd J	lanuar	2014	
Sample Period	09:30	to	10:	:30	10:	35	to	11:35	
Velocity (m/s)				11.	.68				
Volumetric flowrate of Stack gas (m³/hr)				330	013				
Average Stack Temp (°C)				55	i. 0				
Temperature Range - ± 5% (°C)	38.60			t	0			71.40	
Lowest Velocity Reading (m/s)				11.	.30				
Highest Velocity Reading (m/s)				12.	.52				
Ratio (less than 3:1)	1.11			:	:			1	
Pre-conditioning temperature of Filter (°C)		180					180		
Instack sampling - Max Filter temperature (°C)		55.0					55.0		
Post-conditioning temperature Filter/Wash (°C)		160					160		
Oxygen %		18.6					18.6		
Carbon Dioxide %		1.40					1.40		
Moisture (%)				4.	16				
Litres sampled		1190					1155		
Corrected volume sampled - STP (m³)		1.153					1.110		
Blank Filter Run weight gain (mg)	0.0	020		Con	Blank	tion		0.018	
Blank Wash Run weight gain (mg)	0.0	010			mg/m³)			0.009	
Weighing uncertainty of balance (mg)	0.074	This	must be	e <5% of	ELV	ELV =	50	2.5	
Overall Blank value (mg/m³)	0.027	This	must be	<10% of	ELV	ELV =	50	5.0	
Particulate weight collected on filter (mg)		0.08					0.02		
Particulate weight collected in Wash (mg)		0.15					0.00		
Total Particulate weight collected (mg)		0.23					0.02		
Total Particulate Concentration, *STP, dry gas (mg/m³)	0.20 0.02								
Total Particulate Concentration, *STP, wet gas (mg/m³)		0.19					0.02		
Total Particulate Concentration corrected for Oxygen, *STP, dry gas (mg/m³)		N/A					N/A		
Total Particulate Mass Emission (kg/hour)		0.006					0.001		

Redwing Environmental Ltd Appendix Page 26 of 45

Client	Terex									
Site Address	Coventry									
Job Number	P-RED14-001									
Date	23rd January 2014									
Operator(s)	Vicki Gavin & Tony Be	rek								
	,									
					Isokinetic Sa	imple Positions (%)	Sam	pling Plane Diagran	1	
Stack Re	eference		Topcoat 1		multiply by dian	neter to obtain sample points				
					1	14.60		ľ		
lumber of Stacks				1	2	85.40				
tack Configuratio	n		Ro	und	3	N/A	/		Sample Line B	
imensions (mtrs)				.60	4	N/A	-			
	applicable) (metres)			5	N/A	\		/	
umber of Sample		,		1	6	N/A				
lumber of Sample				4	7	N/A		Sample Line A		
lozzle Diameter (n			8	1.0	8	N/A		< • /		
lozzle Area (m²)			0.000	105024				Axis 1	Axis 2	
Stack Area (m²)				011	Averag	ge Isokinetic Flow Ra	te (Itrs/min)	19.48	18.92	
itot Coefficient	0.84	Pitot C	Calibration Due [March 2014		Atmos. Pres		
Position	Distance	Axis 1	Temperature	Swirl Test	Axis 2	Temperature	Swirl Test	99.5		
No.	(cms)	(pa)	(C)	Pass (Y/N)	(pa)	(C)	Pass (Y/N)	Static Pres	sure (pa)	
1	23.36	37	16.8	4.0	32	16.9	4	-13.		
2	136.64	34	16.8	4.0	35	16.8	4	1 Axis	2 Axis	
3	#VALUE!				-			Velocity of t		
4	#VALUE!							6.46	6.28	
5	N/A							Volume Flow		
6	N/A							12.99	12.62	
7	N/A									
8	N/A							Reduce	d Exit	
	rages	36	16.8		34	16.9		N/A		
							200.00			
	o (in K) Tp = ((Mean T1 ature readings ± 5% (°					2.22	289.83	<u> </u>	24.22	
ighest Velocity Rea		- -	.031p-213j -			2.33	6.8		31.32	
owest Velocity Read							6.1			
	(Max permitted = 3:1)						0.1	1.11 : 1		
atio riigilest/Lowest	(max periinted = 5.1)							1.11 .		
				On site	e Checklist					
Range of (Gas Temps	ОК				Manometer Leak Che	eck	OK		
nitial Leak Check	<0.2	Final leak check	<0.2			Pitot Leak Check		OK		
	neck < 2% Vol (I/min)	0.39			_			Run 1	Run 2	
	mum Velocity require		YES		Overall Is	okinetic Ratio (%) (must	be 95 to 115%)	101.8	104.1	
	al Flow Present, YES or I		NO		Are there sufficie	ent rails and kick board	? (YES . NO or N/A)		YES	
	rea greater than 5m ² ?		YES			ont of the sample line th		- 1 metre? (YES or		
	Highest to lowest Velo		YES		1		(O)		YES	
. 43364	gsor to forest vert			ov. =						
				Site Equ	ipment Used					
Pitot Re	eference	RED 02	237			Manometer Referen	ce	RED 0	400	
Thermomet	er Reference	RED 03	354			Thermocouple Refere	nce	RED 0	344	
Balance	Reference					Sampling Pump Refer	ence	RED 0	385	
		1			Barometer Reference RED 0402					

Stack Reference ID			1	opcoat 1					
				Terex					
		RUN 1			RUN 2				
Filter Reference No	N	ICO Run			G47-200114-09				
Date	23rd -	January 2	2014		23rd J	anuary	2014		
Sample Period	08:45	to	09:45	09	09:47 to 10:4				
Velocity (m/s)				6.37	37				
Volumetric flowrate of Stack gas (m³/hr)				46099					
Average Stack Temp (°C)				16.8					
Temperature Range - ± 5% (°C)	2.33			to			31.32		
Lowest Velocity Reading (m/s)				6.13					
Highest Velocity Reading (m/s)				6.80					
Ratio (less than 3:1)	1.11			:			1		
Pre-conditioning temperature of Filter (°C)		180				180			
Instack sampling - Max Filter temperature (°C)		16.8				16.8			
Post-conditioning temperature Filter/Wash (°C)		160			160				
Oxygen %		18.6			18.6				
Carbon Dioxide %		1.40				1.40			
Moisture (%)				2.95					
Litres sampled		1155				1159			
Corrected volume sampled - STP (m³)		1.119				1.114			
Blank Filter Run weight gain (mg)	0.0	010		Blank Concentra			0.009		
Blank Wash Run weight gain (mg)	0.0	050		(mg/m ³			0.045		
Weighing uncertainty of balance (mg)	0.074	This n	nust be <	5% of ELV	ELV =	50	2.5		
Overall Blank value (mg/m³)	0.054	This m	ust be <1	0% of ELV	ELV =	50	5.0		
Particulate weight collected on filter (mg)		0.02				0.21			
Particulate weight collected in Wash (mg)		0.00				0.86			
Total Particulate weight collected (mg)		0.02				1.07			
Total Particulate Concentration, *STP, dry gas (mg/m³)		0.02				0.96			
Total Particulate Concentration, *STP, wet gas (mg/m³)		0.02				0.93			
Total Particulate Concentration corrected for Oxygen, *STP, dry gas (mg/m³)		N/A			N/A				
Total Particulate Mass Emission (kg/hour)		0.001				0.044			

Redwing Environmental Ltd Appendix Page 28 of 45

Client	Terex								
Site Address	Coventry								
Job Number	P-RED14-001								
Date	23rd January 2014								
Operator(s)	Vicki Gavin & Tony Be	rek							
						ample Positions (%)	Sampling Plane Diagram		
Stack Re	eference		Topcoat 2			neter to obtain sample points			
					1	14.60			
Number of Stacks				1	2	85.40			Sample
Stack Configuration	n		Ro	ound	3	N/A	/		Sample Line B
Dimensions (mtrs)			1.	.60	4	N/A	-		
Outlet Diameter (if	applicable) (metres)			5	N/A	\		
Number of Sample	Ports			1	6	N/A		Sample Line A	
Number of Samples	per Axis / Port			4	7	N/A		Line A	
Nozzle Diameter (m	ım)		8	3.0	8	N/A		· ·	
Nozzle Area (m²)			0.000	005024	A	no lookinotio Els D-	to (ltre/min)	Axis 1	Axis 2
Stack Area (m²)			2.	011	Averag	ge Isokinetic Flow Ra	te (Itrs/min)	21.32	20.94
Pitot Coefficient	0.84	Pitot C	alibration Due [Date		March 2014		Atmos. Pres	sure (kPa)
Position	Distance	Axis 1	Temperature	Swirl Test	Axis 2	Temperature	Swirl Test	99.	9
No.	(cms)	(pa)	(C)	Pass (Y/N)	(pa)	(C)	Pass (Y/N)	Static Pres	sure (pa)
1	23.36	41	17.2	4.0	43	17.2	4	-17	.0
2	136.64	44	17.2	4.0	39	17.2	4	1 Axis	2 Axis
3	N/A							Velocity of	flow (m/s)
4	N/A							7.07	6.95
5	N/A							Volume Flow	Rate (m³/s)
6	N/A							14.22	13.97
7	N/A							Reduce	ol Evit
8	N/A							Reduce	u Exit
Aver	ages	43	17.2		41	17.2		N/A	4
Mean Flue Gas Temp	(in K) Tp = ((Mean T1	+ Mean T2)/2)+273)) =					290.2	20	
		C) = (0.95Tp-273) to (1.	05Tp-273) =			2.69	to		31.71
lighest Velocity Read		=	•				7.4		
owest Velocity Read		=					6.8		
Ratio Highest/Lowest	(Max permitted = 3:1)							1.10 :	1
				On site	e Checklist				
Range of C	Gas Temps	ок				Manometer Leak Ch	eck	Oł	(
nitial Leak Check	<0.2	Final leak check	<0.2			Pitot Leak Check		OF	
	neck < 2% Vol (I/min)	0.43			6			Run 1	Run 2
	mum Velocity require		YES		Overall is	sokinetic Ratio (%) (mus	t be 90 to 110%)	100.3	103.4
	al Flow Present, YES or I		NO		Are there sufficie	ent rails and kick board	? (YES , NO or N/A)		YES
	rea greater than 5m ² ?		YES			ont of the sample line th	-	+ 1 metre? (YES or	
	Highest to lowest Velo		YES				NO)	, ,	YES
				Site Equ	ipment Used				
Pitot Re	ference	RED 02	37			Manometer Referen	ice	RED ()400
Thermomete	er Reference	RED 03	54			Thermocouple Refere	ence	RED ()344
Balance F	Reference					Sampling Pump Refer	ence	RED ()385
Tape Measur	re Reference	RED 01	23			Barometer Referen	ce	RED ()402

Stack Reference ID				Торсо	oat 2				
				Ter	ex				
		RUN 1				ı	RUN 2		
Filter Reference No	N	ICO Ru	ın			G47-200114-11			
Date	23rd -	January	y 2014			23rd J	anuary	2014	
Sample Period	10:50	to	11:	50	11:52 to 12:5				
Velocity (m/s)				7.0	1				
Volumetric flowrate of Stack gas (m³/hr)				5074	48				
Average Stack Temp (°C)				17.	2				
Temperature Range - ± 5% (°C)	2.69			to	•			31.71	
Lowest Velocity Reading (m/s)				6.7	7				
Highest Velocity Reading (m/s)				7.4	2				
Ratio (less than 3:1)	1.10			:				1	
Pre-conditioning temperature of Filter (°C)		180					180		
Instack sampling - Max Filter temperature (°C)		17.2					17.2		
Post-conditioning temperature Filter/Wash (°C)		160					160		
Oxygen %		18.6					18.6		
Carbon Dioxide %		1.40					1.40		
Moisture (%)				2.9	5				
Litres sampled		1235					1216		
Corrected volume sampled - STP (m³)		1.182					1.161		
Blank Filter Run weight gain (mg)	0.0	020			Blank entra	tion		0.017	
Blank Wash Run weight gain (mg)	0.0	020			ng/m³)			0.017	
Weighing uncertainty of balance (mg)	0.075	This	s must be	<5% of E	LV	ELV =	50	2.5	
Overall Blank value (mg/m³)	0.034	This	must be	<10% of E	ELV	ELV =	50	5.0	
Particulate weight collected on filter (mg)		0.02					0.04		
Particulate weight collected in Wash (mg)		0.00					1.18		
Total Particulate weight collected (mg)		0.02					1.22		
Total Particulate Concentration, *STP, dry gas (mg/m³)		0.02					1.05		
Total Particulate Concentration, *STP, wet gas (mg/m³)		0.02					1.02		
Total Particulate Concentration corrected for Oxygen, *STP, dry gas (mg/m³)		N/A			N/A				
Total Particulate Mass Emission (kg/hour)		0.001					0.052		

Redwing Environmental Ltd Appendix Page 30 of 45

Client	Terex									
Site Address	Coventry									
Job Number	P-RED14-001									
Date	22nd January 2014									
Operator(s)	Vicki Gavin & Tony Be	rek								
-	,									
					Isokinetic Sa	ample Positions (%)	San	pling Plane Diagrar	1	
Stack Ro	eference	Tor	pcoat Curing Oven		multiply by dian	neter to obtain sample points				
			-		1	14.60		Ì		
Number of Stacks				1	2	85.40				
Stack Configuratio	n		Ro	ound	3	N/A	/		Sample Line B	
Dimensions (mtrs)				.60	4	N/A	-			
	applicable) (metres		•		5	N/A	\)	
Number of Sample				1	6	N/A				
Number of Sample				4	7	N/A		Sample Line A		
Nozzle Diameter (r	-			5.0	8	N/A		< • /		
Nozzle Area (m²)	,			002826		SIA		Axis 1	Axis 2	
Stack Area (m²)				011	Avera	ge Isokinetic Flow Ra	te (Itrs/min)	20.21	21.54	
Pitot Coefficient	0.84	Pitot C	alibration Due [March 2014		Atmos. Pres		
Position	Distance	Axis 1	Temperature	Swirl Test	Axis 2	Temperature	Swirl Test	100		
No.	(cms)	(pa)	(C)	Pass (Y/N)	(pa)	(C)	Pass (Y/N)	Static Pres		
1	23.36	104	60.5	3.0	119	60.5	3	30		
2	136.64	108	60.5	3.0	122	60.5	3	1 Axis	2 Axis	
3	#VALUE!	100	00.5	3.0	122	00.5		Velocity of		
4	#VALUE!							11.92	12.71	
5	N/A							Volume Flow		
6	N/A							23.96	25.55	
7	N/A							25.50	20.55	
8	N/A							Reduce	d Exit	
	rages	106	60.5		121	60.5		N//		
					121	00.5			`	
	p (in K) Tp = ((Mean T1						333.5			
	rature readings ± 5% (°		05Tp-273) =			43.83	to		77.18	
lighest Velocity Rea		=					13.2			
owest Velocity Rea		=					11.8			
Ratio Highest/Lowes	t (Max permitted = 3:1)							1.12 :	1	
				On site	Checklist					
	Gas Temps	OK				Manometer Leak Ch		OH		
nitial Leak Check	<0.2	Final leak check	<0.2			Pitot Leak Check		Or Dum 4		
	heck < 2% Vol (I/min)	0.40			Overall Is	sokinetic Ratio (%) (mus	t be 95 to 115%)	Run 1	Run 2	
	imum Velocity require		YES					96.6	100.8	
	cal Flow Present, YES or N		NO			ent rails and kick board			YES	
	area greater than 5m²?		YES		Is the area infr	ont of the sample line tl	ne length of the probe NO)	+ 1 metre? (YES or	YES	
Passed	Highest to lowest Velo	city (3:1)	YES				·			
				Site Equ	ipment Used					
Pitot Re	eference	RED 02	37			Manometer Referen	ice	RED (400	
Thermomet	ter Reference	RED 03	54			Thermocouple Refere	ence	RED (344	
Balance	Reference					Sampling Pump Refer	ence	RED (385	
T M	re Reference	RED 01	23		Barometer Reference RED 0402					

Stack Reference ID			Торс	oat Cu	ring C	ven			
				Tere	ex				
		RUN 1				RUN 2			
Filter Reference No	NCO Run			T	G47-200114-07				
Date	22nd	Januar	y 2014			22nd J	lanuary	2014	
Sample Period	13:50	to	14:5	50	14:00 to 15				
Velocity (m/s)				12.3	81				
Volumetric flowrate of Stack gas (m³/hr)				8911	13				
Average Stack Temp (°C)				60.	5				
Temperature Range - ± 5% (°C)	43.83			to				77.18	
Lowest Velocity Reading (m/s)				11.8	80				
Highest Velocity Reading (m/s)				13.1	8				
Ratio (less than 3:1)	1.12			:				1	
Pre-conditioning temperature of Filter (°C)		180					180		
Instack sampling - Max Filter temperature (°C)		60.5					60.5		
Post-conditioning temperature Filter/Wash (°C)		160			160				
Oxygen %		18.6					18.6		
Carbon Dioxide %		1.40					1.40		
Moisture (%)				4.10	6				
Litres sampled		1200					1353		
Corrected volume sampled - STP (m³)		1.149					1.302		
Blank Filter Run weight gain (mg)	0.0	010			Blank entrat	tion		0.008	
Blank Wash Run weight gain (mg)	0.0	010			ng/m³)			0.008	
Weighing uncertainty of balance (mg)	0.074	This	s must be	<5% of E	LV	ELV =	50	2.5	
Overall Blank value (mg/m³)	0.016	This	must be <	<10% of E	LV	ELV =	50	5.0	
Particulate weight collected on filter (mg)		0.02					0.08		
Particulate weight collected in Wash (mg)		0.00					0.76		
Total Particulate weight collected (mg)		0.02					0.84		
Total Particulate Concentration, *STP, dry gas (mg/m³)		0.02					0.64		
Total Particulate Concentration, *STP, wet gas (mg/m³)		0.02			0.62				
Total Particulate Concentration corrected for Oxygen, *STP, dry gas (mg/m³)		N/A			N/A				
Total Particulate Mass Emission (kg/hour)		0.001					0.053		

Redwing Environmental Ltd Appendix Page 32 of 45

Client	TEREX								
Site Address	COVENTRY								
Job Number	P-RED14-001								
Date	22nd January 2014								
Operator(s)	V Gavin & T Berek								
Operator(s)	V Gaviii & 1 Belek			I					
					Isokinetic San	nple Positions (%)	Sam.	pling Plane Diagra	
Cerroli Di	eference	De				eter to obtain sample	San	ipling Plane Diagra	m
Stack Re	elerence	FI	eparation Booth 1			oints		· •	
					1	14.60			
Number of Stacks				1	2	85.40	/		Sample Line B
Stack Configuration	n			ound	3	N/A			
Dimensions (mtrs)			0).70	4	N/A			
	applicable) (metres)			5	N/A			
Number of Sample				2	6	N/A		Sample Line A	
Number of Sample				2	7	N/A		ļ	/
Nozzle Diameter (n	nm)			6.0	8	N/A			
Nozzle Area (m²)				002826	Averag	e Isokinetic Flow Rate	(ltrs/min)	Axis 1	Axis 2
Stack Area (m²)				.385				21.10	20.69
Pitot Coefficient	0.84		alibration Due			15/03/14		Atmos. Pre	
Position	Distance	Axis 1	Temperature	Swirl Test	Axis 2	Temperature	Swirl Test		0.9
No.	(cms)	(pa)	(C)	(°)	(pa)	(C)	(°)	Static Pre	
1	10.22	127	23.4	4.0	123	23.4	5		2.0
2	59.78	132	23.4	5.0	126	23.4	5	1 Axis	2 Axis
3	N/A							Velocity of	f flow (m/s)
4	N/A							12.44	12.20
5	N/A							Volume Flov	/ Rate (m³/s)
6	N/A							4.79	4.70
7	N/A							Reduc	ed Exit
8	N/A								
Averages		130	23.4		125	23.4		N.	A
Mean Flue Gas Ter	mp (in K) Tp = ((Mea	n T1 + Mean T2)/2)+	-273)) =				296.4	10	
Permitted Range o	f gas temperature re	eadings (C) = (0.95T	p-273) to (1.05T	p-273) =		8.58	to		38.22
Highest Velocity Re	eading (m/s)	=					12.9)	
Lowest Velocity Re	ading (m/s)	=					12.1	<u> </u>	
Ratio Highest/Lowe	est (Max permitted =	= 3:1)						1.07	:1
				On si	ite Checklist				
Initial Leak Check		End of first run			Start of 2 nd run		End of 2 nd run		
	Check < 2% Vol	0.42				Manometer Leak Che	ck	0	K
(I/n	nin)					Pitot Leak Check		0	К
Range of 0	Gas Temps	ОК			Overall Isok	inetic Ratio (%) (must	be 95 to 115%)	Run 1	Run 2
Passed minin	num Velocity require	ements (>5pa)	YES			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		100.8	N/A
Negative Local F	Flow Present, YES o	r NO (Yes = Fail)	NO		Are there sufficie	ent rails and kick board	d? (YES , NO or N/A)	N/A
Is the Platform are	ea greater than 5m²	(YES, NO or N/A)	N/A		Is the area infr	ont of the sample line		obe + 1 metre?	YES
Passed H	lighest to lowest Vel	locity (3:1)	YES			(YES o	r NO)		
				Site Eq	uipment Used				
Pitot Re	eference	RED 0	289		Manometer Reference RED 04				0404
	er Reference	RED 0351-R						0292	
	Reference	N/A				iampling Pump Refere			0196
	re Reference	RED 0			1	Barometer Referenc			0403
	rmocouple	RED 01			lana di lana	oinger Outlet Thermoo			/A
							•		
Cali	pers	RED 0	200		1 (Condenser Thermocouple N/A			

Stack Reference ID		Pre	paration Boo	oth 1			
			TEREX				
	RUN 1						
Filter Reference No		(G47-200114-1	5			
Date		22	nd January 20)14			
Sample Period	09:25		to			10:25	
Velocity (m/s)			12.32				
Volume flow rate of Stack gas (m³/hr)			17073				
Average Stack Temp (°C)			23.4				
Temp Range ± 5% (°C)	8.58		to			38.22	
Lowest Velocity Reading (m/s)		·	12.10				
Highest Velocity Reading (m/s)			12.92				
Ratio (less than 3:1)	1.07		:			1	
Pre-conditioning temperature of Filter (°C)		·	180				
Instack sampling - Max Filter temperature (°C)			24.9				
Post-conditioning temperature Filter/Wash (°C)			160				
Oxygen %			19.1				
Carbon Dioxide %			0.50				
Moisture (%)			0.00				
Litres sampled			1254				
Corrected volume sampled - STP (m³)			1.217				
Blank Filter Run weight gain (mg)	0.0	000	Blank Concentra			0.000	
Blank Wash Run weight gain (mg)	0.0	000	(mg/m ³			0.000	
Weighing uncertainty of balance (mg)	0.074	This must be	e <5% of ELV	ELV =	50	2.5	
Overall Blank value (mg/m³)	0.000	This must be	<10% of ELV	ELV =	50	5.0	
Particulate weight collected on filter (mg)			0.03				
Particulate weight collected in Wash (mg)			1.13				
Total Particulate weight collected (mg)			1.16				
Total Particulate Concentration, dry gas at STP (mg/m³)			0.95				
Total Particulate Concentration, wet gas at STP (mg/m³)	0.95						
Total Particulate Concentration corrected for 11% Oxygen, dry gas (mg/m³)			N/A				
Total Particulate Mass Emission (kg/hour)			0.016				

Client	TEREX									
Site Address	COVENTRY									
Job Number	P-RED14-001									
Date	22nd January 2014									
Operator(s)	V Gavin & T Berek									
operator(s)	V Cavilla I Belek									
					Isokinetic San	nple Positions (%)	San	npling Plane Diagra	m	
Stack Re	forence	Dr.	eparation Booth 2		multiply by diame	eter to obtain sample	Jan	iping Flate Diagra		
SIACK RE	referice	11	eparation bootin z	•	1 P	oints 14.60		•		
Number of Stacks				1	2	85.40				
Stack Configuration	-			ound	3	N/A	/		Sample Line B	
Dimensions (mtrs)				0.70	4	N/A				
	applicable) (metres			1.10	5	N/A	()	
Number of Sample		,		2	6	N/A	\			
Number of Sample				2	7	N/A		Sample Line A		
					8			< • • ·		
Nozzle Diameter (n	,			6.0 002826	·	N/A		Axis 1	Axis 2	
Nozzle Area (m²)				.385	Average	e Isokinetic Flow Rate	(Itrs/min)	20.81	20.81	
Stack Area (m²) Pitot Coefficient	0.84	Ditat C	Calibration Due I			15/3/14			ssure (kPa)	
Position	Distance	Axis 1	Temperature	Swirl Test	Axis 2	Temperature	Swirl Test		0.9	
No.	(cms)	(pa)	(C)		(pa)	(C)			ssure (pa)	
1	10.22	124	26.0	(°) 5.0	128	26.1	(°)).0	
2	59.78	126	26.1	4.0	122	26.2	5	1 Axis	2 Axis	
3	N/A	120	20.1	4.0	122	20.2	3		flow (m/s)	
4	N/A							12.28	12.28	
5	N/A								v Rate (m³/s)	
6	N/A							4.72	4.72	
7	N/A							4.12	4.72	
8	N/A							Reduc	ed Exit	
Averages		125	26.1		125	26.2		N	/A	
	mp (in K) Tp = ((Mea	ın T1 + Mean T2)/2):	+273)) =				299.0	05		
	f gas temperature re			p-273) =		11.10	to		41.00	
Highest Velocity Re		=	, ,	ĺ			12.8			
Lowest Velocity Re		=					12.1	1		
	est (Max permitted =	= 3:1)						1.06	:1	
				0.5	to Chacklist					
				On si	te Checklist					
Initial Leak Check	0.2	End of first run	0.2		Start of 2 nd run		End of 2 nd run			
Acceptable Leak		0.42				Manometer Leak Che	ck	0	К	
(I/n	ninj					Pitot Leak Check		0	К	
Range of 0	Gas Temps	ОК			Overall Isok	inetic Ratio (%) (must	be 95 to 115%)	Run 1	Run 2	
Passed minin	num Velocity require	ements (>5pa)	YES					101.8	#DIV/0!	
	low Present, YES o		NO			ent rails and kick board			NO	
	ea greater than 5m²?		NO		Is the area infr	ont of the sample line (YES o		robe + 1 metre?	YES	
Passed H	ighest to lowest Vel	locity (3:1)	YES			(1230	110)			
				Site Eq	uipment Used					
Ditot De	eference	RED 0	290			Manameter Deferen	•	DEN	0393	
	er Reference	RED 0351-R			Manometer Reference Thermocouple Reference				0362	
	Reference	N/A				ampling Pump Refere			0258	
	re Reference	RED 0			-	Barometer Reference			0094	
	rmocouple	RED 0			lmn	inger Outlet Thermoo			/A	
	pers	RED 0				ondenser Thermocou				
Jan	r	ILD 0				Condenser Thermocouple N/A				

Stack Reference ID		Pre	paration Boo	oth 2			
			TEREX				
	RUN 1						
Filter Reference No	G47-200114-17						
Date		22	nd January 20	014			
Sample Period	11:35		to			12:35	
Velocity (m/s)		I	12.28				
Volume flow rate of Stack gas (m³/hr)			17007				
Average Stack Temp (°C)			26.1				
Temp Range ± 5% (°C)	11.10		to			41.00	
Lowest Velocity Reading (m/s)		'	12.10				
Highest Velocity Reading (m/s)			12.78				
Ratio (less than 3:1)	1.06		:			1	
Pre-conditioning temperature of Filter (°C)		·	180				
Instack sampling - Max Filter temperature (°C)			26.3				
Post-conditioning temperature Filter/Wash (°C)			160				
Oxygen %			18.9				
Carbon Dioxide %			0.70				
Moisture (%)			0.00				
Litres sampled			1296				
Corrected volume sampled - STP (m³)			1.245				
Blank Filter Run weight gain (mg)	0.0)20	Blank Concentra			0.016	
Blank Wash Run weight gain (mg)	0.0)10	(mg/m ³			0.008	
Weighing uncertainty of balance (mg)	0.074	This must be	e <5% of ELV	ELV =	50	2.5	
Overall Blank value (mg/m³)	0.024	This must be	<10% of ELV	ELV =	50	5.0	
Particulate weight collected on filter (mg)			0.04				
Particulate weight collected in Wash (mg)			0.40				
Total Particulate weight collected (mg)			0.44				
Total Particulate Concentration, dry gas at STP (mg/m³)			0.35				
Total Particulate Concentration, wet gas at STP (mg/m³)	0.35						
Total Particulate Concentration corrected for 11% Oxygen, dry gas (mg/m³)			N/A				
Total Particulate Mass Emission (kg/hour)			0.006				

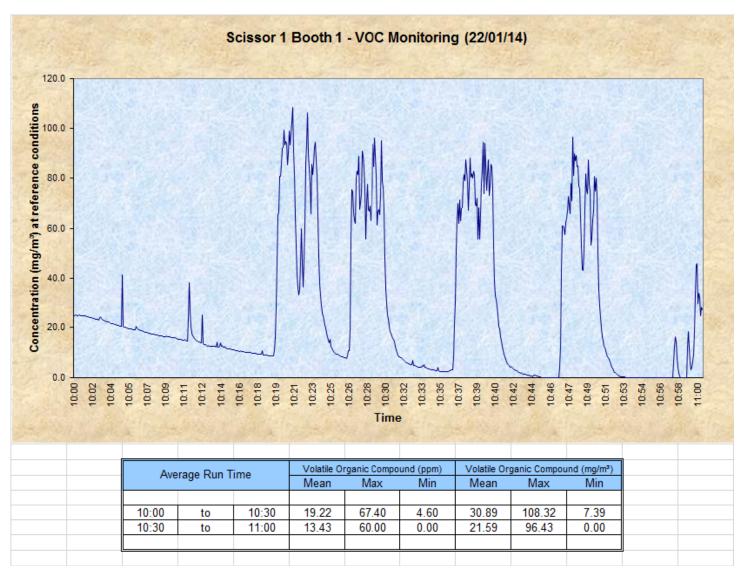
APPENDIX B

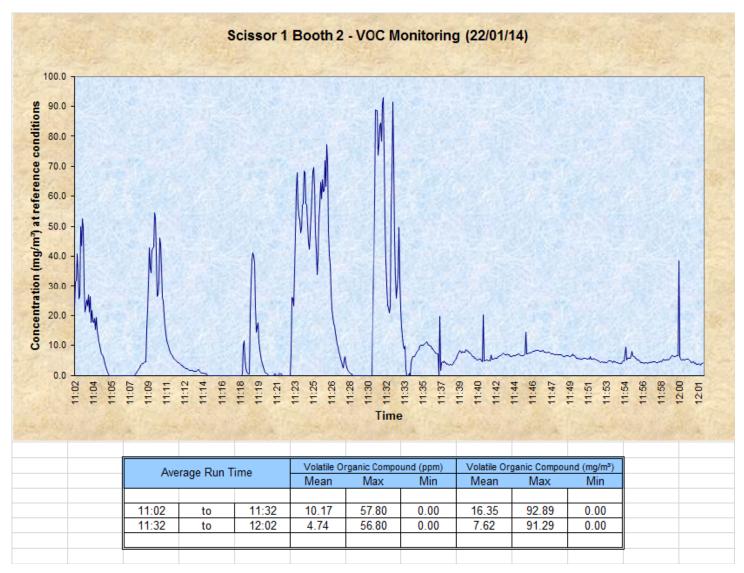
VOC Raw Data

	Scissor 1 Booth 1 - VOC Monitoring				
Date	Time	VOC mg/m³	Date	Time	VOC mg/m ³
22-Jan-14	10:00:32	24.75	22-Jan-14	10:49:32	75.21
22-Jan-14	10:01:32	24.43	22-Jan-14	10:50:32	72.00
22-Jan-14	10:02:32	23.46	22-Jan-14	10:51:32	8.36
22-Jan-14	10:03:32	22.50	22-Jan-14	10:52:32	0.96
22-Jan-14	10:04:32	21.21	22-Jan-14	10:53:32	0.00
22-Jan-14	10:05:32	19.93	22-Jan-14	10:54:32	0.00
22-Jan-14	10:06:32	20.25	22-Jan-14	10:55:32	0.00
22-Jan-14	10:07:32	18.00	22-Jan-14	10:56:32	0.00
22-Jan-14	10:08:32	17.04	22-Jan-14	10:57:32	0.00
22-Jan-14	10:09:32	16.07	22-Jan-14	10:58:32	0.00
22-Jan-14	10:10:32	15.11	22-Jan-14	10:59:32	4.18
22-Jan-14	10:11:32	38.25	22-Jan-14	11:00:32	27.00
22-Jan-14	10:11:32	14.14	22-0aii-14	11.00.52	21.00
22-Jan-14	10:12:32	12.54			
22-Jan-14	10:13:32	13.82	Λνο	rage	26.24
22-Jan-14	10:14:32	11.25	Ave	iaye	20.24
22-Jan-14 22-Jan-14	10:15:32	10.29			
22-Jan-14	10:17:32	9.64 10.61	The data repre	sented in this	table is express
22-Jan-14	10:18:32		at 1 minute i	ntervals but the	e data used in th
22-Jan-14	10:19:32	8.68	chart is pro	duced using 5	second intervals
22-Jan-14	10:20:32	92.25			
22-Jan-14	10:21:32	90.64			
22-Jan-14	10:22:32	47.57			
22-Jan-14 22-Jan-14	10:22:32 10:23:32	47.57 94.50			
22-Jan-14 22-Jan-14 22-Jan-14	10:22:32 10:23:32 10:24:32	47.57 94.50 19.61			
22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14	10:22:32 10:23:32 10:24:32 10:25:32	47.57 94.50 19.61 9.32			
22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14	10:22:32 10:23:32 10:24:32 10:25:32 10:26:32	47.57 94.50 19.61 9.32 7.39			
22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14	10:22:32 10:23:32 10:24:32 10:25:32 10:26:32 10:27:32	47.57 94.50 19.61 9.32 7.39 82.93			
22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14	10:22:32 10:23:32 10:24:32 10:25:32 10:26:32 10:27:32 10:28:32	47.57 94.50 19.61 9.32 7.39 82.93 77.46			
22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14	10:22:32 10:23:32 10:24:32 10:25:32 10:26:32 10:27:32 10:28:32 10:29:32	47.57 94.50 19.61 9.32 7.39 82.93 77.46 61.07			
22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14	10:22:32 10:23:32 10:24:32 10:25:32 10:26:32 10:27:32 10:28:32 10:29:32 10:30:32	47.57 94.50 19.61 9.32 7.39 82.93 77.46 61.07 25.07			
22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14	10:22:32 10:23:32 10:24:32 10:25:32 10:26:32 10:27:32 10:28:32 10:29:32 10:30:32 10:31:32	47.57 94.50 19.61 9.32 7.39 82.93 77.46 61.07 25.07 9.00			
22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14	10:22:32 10:23:32 10:24:32 10:25:32 10:26:32 10:27:32 10:28:32 10:29:32 10:30:32 10:31:32 10:32:32	47.57 94.50 19.61 9.32 7.39 82.93 77.46 61.07 25.07 9.00 5.46			
22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14	10:22:32 10:23:32 10:24:32 10:25:32 10:26:32 10:27:32 10:28:32 10:29:32 10:30:32 10:31:32	47.57 94.50 19.61 9.32 7.39 82.93 77.46 61.07 25.07 9.00 5.46 4.18			
22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14	10:22:32 10:23:32 10:24:32 10:25:32 10:26:32 10:27:32 10:28:32 10:29:32 10:30:32 10:31:32 10:32:32	47.57 94.50 19.61 9.32 7.39 82.93 77.46 61.07 25.07 9.00 5.46			
22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14	10:22:32 10:23:32 10:24:32 10:25:32 10:26:32 10:27:32 10:28:32 10:29:32 10:30:32 10:31:32 10:32:32 10:33:32	47.57 94.50 19.61 9.32 7.39 82.93 77.46 61.07 25.07 9.00 5.46 4.18			
22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14	10:22:32 10:23:32 10:24:32 10:25:32 10:26:32 10:27:32 10:28:32 10:29:32 10:30:32 10:31:32 10:32:32 10:33:32 10:33:32	47.57 94.50 19.61 9.32 7.39 82.93 77.46 61.07 25.07 9.00 5.46 4.18 3.21			
22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14	10:22:32 10:23:32 10:24:32 10:25:32 10:26:32 10:27:32 10:28:32 10:29:32 10:30:32 10:31:32 10:32:32 10:33:32 10:34:32 10:35:32	47.57 94.50 19.61 9.32 7.39 82.93 77.46 61.07 25.07 9.00 5.46 4.18 3.21 2.25			
22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14	10:22:32 10:23:32 10:24:32 10:25:32 10:26:32 10:27:32 10:28:32 10:30:32 10:31:32 10:32:32 10:33:32 10:34:32 10:35:32 10:36:32	47.57 94.50 19.61 9.32 7.39 82.93 77.46 61.07 25.07 9.00 5.46 4.18 3.21 2.25 2.57			
22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14	10:22:32 10:23:32 10:24:32 10:25:32 10:26:32 10:27:32 10:28:32 10:29:32 10:30:32 10:31:32 10:32:32 10:33:32 10:34:32 10:35:32 10:36:32 10:37:32	47.57 94.50 19.61 9.32 7.39 82.93 77.46 61.07 25.07 9.00 5.46 4.18 3.21 2.25 2.57 63.00			
22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14	10:22:32 10:23:32 10:24:32 10:25:32 10:26:32 10:27:32 10:28:32 10:29:32 10:30:32 10:31:32 10:32:32 10:33:32 10:34:32 10:35:32 10:36:32 10:37:32 10:37:32	47.57 94.50 19.61 9.32 7.39 82.93 77.46 61.07 25.07 9.00 5.46 4.18 3.21 2.25 2.57 63.00 81.64			
22-Jan-14 22-Jan-14	10:22:32 10:23:32 10:24:32 10:25:32 10:26:32 10:27:32 10:28:32 10:30:32 10:31:32 10:32:32 10:33:32 10:34:32 10:35:32 10:36:32 10:37:32 10:38:32 10:38:32 10:39:32	47.57 94.50 19.61 9.32 7.39 82.93 77.46 61.07 25.07 9.00 5.46 4.18 3.21 2.25 2.57 63.00 81.64 83.57			
22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14	10:22:32 10:23:32 10:24:32 10:25:32 10:26:32 10:27:32 10:28:32 10:30:32 10:31:32 10:33:32 10:33:32 10:34:32 10:35:32 10:36:32 10:37:32 10:38:32 10:39:32 10:39:32	47.57 94.50 19.61 9.32 7.39 82.93 77.46 61.07 25.07 9.00 5.46 4.18 3.21 2.25 2.57 63.00 81.64 83.57 75.21			
22-Jan-14 22-Jan-14	10:22:32 10:23:32 10:24:32 10:25:32 10:26:32 10:27:32 10:28:32 10:30:32 10:31:32 10:32:32 10:33:32 10:34:32 10:35:32 10:36:32 10:37:32 10:39:32 10:40:32 10:40:32 10:41:32	47.57 94.50 19.61 9.32 7.39 82.93 77.46 61.07 25.07 9.00 5.46 4.18 3.21 2.25 2.57 63.00 81.64 83.57 75.21 10.61			
22-Jan-14 22-Jan-14	10:22:32 10:23:32 10:24:32 10:25:32 10:26:32 10:27:32 10:29:32 10:30:32 10:31:32 10:32:32 10:33:32 10:34:32 10:35:32 10:36:32 10:37:32 10:38:32 10:39:32 10:40:32 10:42:32 10:42:32 10:43:32	47.57 94.50 19.61 9.32 7.39 82.93 77.46 61.07 25.07 9.00 5.46 4.18 3.21 2.25 2.57 63.00 81.64 83.57 75.21 10.61 3.21 1.29			
22-Jan-14 22-Jan-14	10:22:32 10:23:32 10:24:32 10:25:32 10:26:32 10:27:32 10:29:32 10:30:32 10:31:32 10:32:32 10:33:32 10:34:32 10:36:32 10:37:32 10:38:32 10:39:32 10:40:32 10:42:32 10:42:32 10:44:32	47.57 94.50 19.61 9.32 7.39 82.93 77.46 61.07 25.07 9.00 5.46 4.18 3.21 2.25 2.57 63.00 81.64 83.57 75.21 10.61 3.21 1.29 0.96			
22-Jan-14 22-Jan-14	10:22:32 10:23:32 10:24:32 10:25:32 10:26:32 10:27:32 10:28:32 10:30:32 10:31:32 10:33:32 10:33:32 10:34:32 10:36:32 10:37:32 10:38:32 10:39:32 10:40:32 10:44:32 10:44:32 10:44:32 10:44:32 10:45:32	47.57 94.50 19.61 9.32 7.39 82.93 77.46 61.07 25.07 9.00 5.46 4.18 3.21 2.25 2.57 63.00 81.64 83.57 75.21 10.61 3.21 1.29 0.96 0.00			
22-Jan-14 22-Jan-14	10:22:32 10:23:32 10:24:32 10:25:32 10:26:32 10:27:32 10:29:32 10:30:32 10:31:32 10:32:32 10:33:32 10:34:32 10:36:32 10:37:32 10:38:32 10:39:32 10:40:32 10:42:32 10:42:32 10:44:32	47.57 94.50 19.61 9.32 7.39 82.93 77.46 61.07 25.07 9.00 5.46 4.18 3.21 2.25 2.57 63.00 81.64 83.57 75.21 10.61 3.21 1.29 0.96			

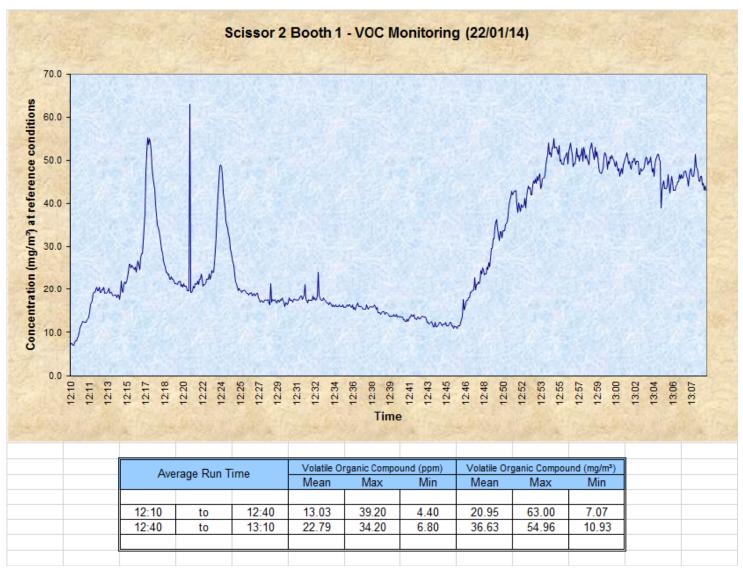
	Sc	issor 1 Booth 2 -	VOC Monitor	ing	
D 4	T.	NOC / *	D 4	т.	NOC / *
Date 14	Time	VOC mg/m ⁸	Date	Time	VOC mg/m ⁸
22-Jan-14	11:02:28	23.14	22-Jan-14	11:51:28	5.46
22-Jan-14	11:03:28	21.21	22-Jan-14	11:52:28	4.82
22-Jan-14	11:04:28	15.27	22-Jan-14	11:53:28	4.82
22-Jan-14	11:05:28	2.89	22-Jan-14	11:54:28	3.86
22-Jan-14	11:06:28	0.00	22-Jan-14	11:55:28	5.79
22-Jan-14	11:07:28	0.00	22-Jan-14	11:56:28	4.18
22-Jan-14	11:08:28	1.29	22-Jan-14	11:57:28	4.50
22-Jan-14	11:09:28	22.18	22-Jan-14	11:58:28	4.50
22-Jan-14	11:10:28	31.18	22-Jan-14	11:59:28	6.43
22-Jan-14	11:11:28	8.68	22-Jan-14	12:00:28	5.14
22-Jan-14	11:12:28	3.86	22-Jan-14	12:01:28	4.50
22-Jan-14	11:13:28	1.61	22-Jan-14	12:02:28	4.18
22-Jan-14	11:14:28	0.96			
22-Jan-14	11:15:28	0.00			
22-Jan-14	11:16:28	0.00	Ave	rage	11.97
22-Jan-14	11:17:28	0.00		_	
22-Jan-14	11:18:28	0.32			
22-Jan-14	11:19:28	41.14	T1 1 .		
22-Jan-14	11:20:28	2.89			table is expresse
22-Jan-14	11:21:28	0.00			data used in the
22-Jan-14	11:22:28	0.00	chart is pro	duced using 5	second intervals
22-Jan-14	11:23:28	35.68			
22-Jan-14	11:24:28	67.82			
22-Jan-14	11:25:28	42.11			
22-Jan-14	11:26:28	77.14			
22-Jan-14	11:27:28	10.29			
22-Jan-14	11:28:28	1.93			
22-Jan-14	11:29:28	0.00			
22-Jan-14	11:30:28	0.00			
22-Jan-14	11:31:28	73.61			
22-Jan-14	11:32:28	22.50			
22-Jan-14	11:33:28	49.50			
22-Jan-14 22-Jan-14	11:34:28	0.64			
22-Jan-14 22-Jan-14	11:35:28	9.64			
22-Jan-14 22-Jan-14		9.64			
	11:36:28 11:37:28				
22-Jan-14					
		1.61			
22-Jan-14	11:38:28	3.54			
22-Jan-14	11:38:28 11:39:28	3.54 7.39			
22-Jan-14 22-Jan-14	11:38:28 11:39:28 11:40:28	3.54 7.39 6.11			
22-Jan-14 22-Jan-14 22-Jan-14	11:38:28 11:39:28 11:40:28 11:41:28	3.54 7.39 6.11 20.25			
22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14	11:38:28 11:39:28 11:40:28 11:41:28 11:42:28	3.54 7.39 6.11 20.25 5.46			
22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14	11:38:28 11:39:28 11:40:28 11:41:28 11:42:28 11:43:28	3.54 7.39 6.11 20.25 5.46 7.07			
22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14	11:38:28 11:39:28 11:40:28 11:41:28 11:42:28 11:43:28 11:44:28	3.54 7.39 6.11 20.25 5.46 7.07 6.43			
22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14	11:38:28 11:39:28 11:40:28 11:41:28 11:42:28 11:43:28 11:44:28 11:45:28	3.54 7.39 6.11 20.25 5.46 7.07 6.43 7.07			
22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14	11:38:28 11:39:28 11:40:28 11:41:28 11:42:28 11:43:28 11:44:28 11:45:28 11:46:28	3.54 7.39 6.11 20.25 5.46 7.07 6.43 7.07 8.36			
22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14	11:38:28 11:39:28 11:40:28 11:41:28 11:42:28 11:43:28 11:44:28 11:45:28 11:46:28 11:47:28	3.54 7.39 6.11 20.25 5.46 7.07 6.43 7.07 8.36 7.71			
22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14	11:38:28 11:39:28 11:40:28 11:41:28 11:42:28 11:43:28 11:44:28 11:45:28 11:46:28 11:47:28 11:48:28	3.54 7.39 6.11 20.25 5.46 7.07 6.43 7.07 8.36 7.71 7.07			
22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14 22-Jan-14	11:38:28 11:39:28 11:40:28 11:41:28 11:42:28 11:43:28 11:44:28 11:45:28 11:46:28 11:47:28	3.54 7.39 6.11 20.25 5.46 7.07 6.43 7.07 8.36 7.71			

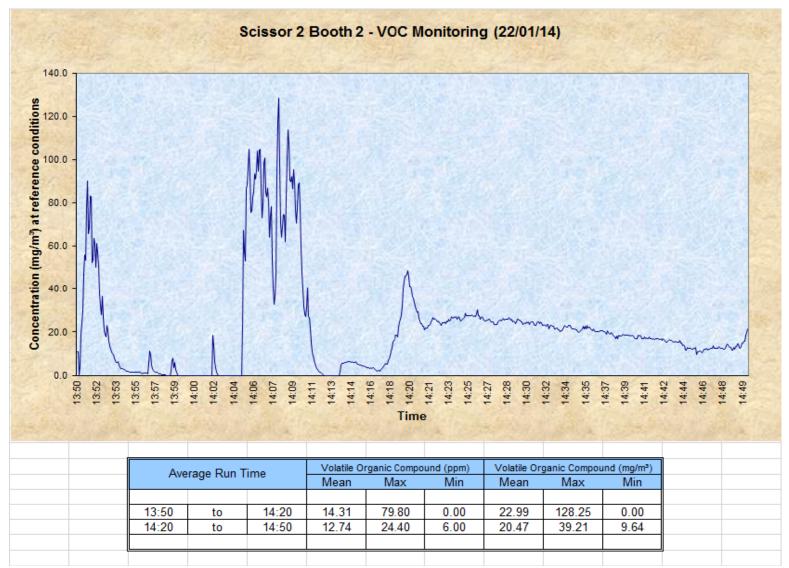
	Scissor 2 Booth 1 - VOC Monitoring				
Date	Time	VOC mg/m³	Date	Time	VOC mg/m ⁸
22-Jan-14	12:10:03	7.07	22-Jan-14	12:59:03	52.07
22-Jan-14	12:11:03	11.57	22-Jan-14	13:00:03	49.82
22-Jan-14	12:11:03	17.36	22-Jan-14 22-Jan-14	13:01:03	48.21
22-Jan-14	12:13:03	19.93	22-Jan-14 22-Jan-14	13:02:03	49.82
22-Jan-14 22-Jan-14	12:14:03	18.32	22-Jan-14 22-Jan-14	13:02:03	46.61
22-Jan-14 22-Jan-14	12:14:03	21.21	22-Jan-14 22-Jan-14	13:04:03	49.18
22-Jan-14 22-Jan-14	12:16:03	25.39	22-Jan-14 22-Jan-14	13:04:03	42.75
22-Jan-14 22-Jan-14	12:17:03	47.25	22-Jan-14 22-Jan-14	13:06:03	45.00
					45.00
22-Jan-14	12:18:03	37.29	22-Jan-14	13:07:03	
22-Jan-14	12:19:03	24.11	22-Jan-14	13:08:03	47.89
22-Jan-14	12:20:03	21.86	22-Jan-14	13:09:03	44.04
22-Jan-14	12:21:03	19.61			
22-Jan-14	12:22:03	22.50			
22-Jan-14	12:23:03	22.50			
22-Jan-14	12:24:03	48.54	Ave	rage	28.94
22-Jan-14	12:25:03	27.64			
22-Jan-14	12:26:03	19.61			
22-Jan-14	12:27:03	18.64	The data renre	seantad in this	table is expressed
22-Jan-14	12:28:03	17.36			e data used in the
22-Jan-14	12:29:03	17.68			second intervals
22-Jan-14	12:30:03	16.71	chart is pro-	duced using 5	second intervals
22-Jan-14	12:31:03	17.36			
22-Jan-14	12:32:03	16.71			
22-Jan-14	12:33:03	24.11			
22-Jan-14	12:34:03	16.39			
22-Jan-14	12:35:03	16.39			
22-Jan-14	12:36:03	16.07			
22-Jan-14	12:37:03	16.07			
22-Jan-14	12:38:03	15.75			
22-Jan-14	12:39:03	14.46			
22-Jan-14	12:40:03	13.82			
22-Jan-14	12:41:03	12.86			
22-Jan-14	12:42:03	14.14			
22-Jan-14	12:43:03	13.50			
22-Jan-14	12:44:03	11.25			
22-Jan-14	12:45:03	11.57			
22-Jan-14	12:46:03	10.93			
22-Jan-14	12:47:03	17.36			
22-Jan-14	12:48:03	21.54			
22-Jan-14	12:49:03	25.39			
22-Jan-14	12:50:03	33.43			
22-Jan-14	12:51:03	41.46			
22-Jan-14	12:52:03	39.21			
22-Jan-14	12:53:03	44.36			
22-Jan-14	12:54:03	45.96			
22-Jan-14 22-Jan-14	12:55:03	54.96			
22-Jan-14 22-Jan-14	12:56:03	50.79			
22-Jan-14 22-Jan-14					
	12:57:03	50.46			
22-Jan-14	12:58:03	51.11			


	Scissor 2 Booth 2 - VOC Monitoring				
Date	Time	VOC mg/m ⁸	Date	Time	VOC mg/m ⁸
22-Jan-14	13:50:26	10.61	22-Jan-14	14:39:26	18.32
22-Jan-14	13:51:26	90.32	22-Jan-14	14:40:26	17.04
22-Jan-14	13:52:26	51.11	22-Jan-14	14:41:26	17.36
22-Jan-14	13:53:26	13.50	22-Jan-14	14:42:26	16.71
22-Jan-14	13:54:26	3.21	22-Jan-14	14:43:26	16.39
22-Jan-14	13:55:26	1.61	22-Jan-14	14:44:26	14.79
22-Jan-14	13:56:26	0.96	22-Jan-14	14:45:26	11.89
22-Jan-14	13:57:26	1.93	22-Jan-14	14:46:26	11.25
22-Jan-14	13:58:26	0.00	22-Jan-14	14:47:26	12.54
22-Jan-14	13:59:26	0.32	22-Jan-14	14:48:26	12.54
22-Jan-14	14:00:26	0.00	22-Jan-14	14:49:26	13.18
22-Jan-14	14:01:26	0.00	22-Jan-14	14:50:26	21.21
22-Jan-14	14:02:26	0.00			
22-Jan-14	14:03:26	0.00			
22-Jan-14	14:04:26	0.00	Ave	rage	21.71
22-Jan-14	14:05:26	57.54			
22-Jan-14	14:06:26	90.96			
22-Jan-14	14:07:26	82.93	T		
22-Jan-14	14:08:26	117.64			table is expresse
22-Jan-14	14:09:26	106.71			data used in the
22-Jan-14	14:10:26	78.11	chart is pro	duced using 5	second intervals
22-Jan-14	14:11:26	14.79			
22-Jan-14	14:12:26	0.64			
22-Jan-14	14:13:26	0.00			
22-Jan-14	14:14:26	5.79			
22-Jan-14	14:15:26	5.46			
22-Jan-14	14:16:26	3.54			
22-Jan-14	14:17:26	2.25			
22-Jan-14	14:18:26	9.32			
22-Jan-14	14:19:26	25.71			
22-Jan-14	14:20:26	39.21			
22-Jan-14	14:21:26	22.50			
22-Jan-14	14:22:26	26.04			
22-Jan-14	14:23:26	24.43			
22-Jan-14	14:24:26	27.00			
22-Jan-14	14:25:26	27.32			
22-Jan-14	14:26:26	27.64			
22-Jan-14	14:27:26	26.04			
22-Jan-14	14:28:26	25.07			
22-Jan-14 22-Jan-14	14:29:26	24.75			
22-Jan-14 22-Jan-14	14:29:26	23.79			
22-Jan-14 22-Jan-14	14:31:26	23.14			
22-Jan-14 22-Jan-14	14:31:26	22.50			
22-Jan-14 22-Jan-14					
	14:33:26	21.86			
22-Jan-14	14:34:26	22.82			
22-Jan-14	14:35:26	20.25			
22-Jan-14	14:36:26	21.21			
22-Jan-14	14:37:26	20.57			
22-Jan-14	14:38:26	18.32			


APPENDIX C

VOC Charts





Terex United Kingdom Limited P-RED14-001/EB/R1/Rev0

Redwing Environmental Ltd Appendix Page 46 of 45

Terex United Kingdom Limited P-RED14-001/EB/R1/Rev0

Redwing Environmental Ltd Appendix Page 47 of 45

This document was created with Win2PDF available at http://www.win2pdf.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only. This page will not be added after purchasing Win2PDF.