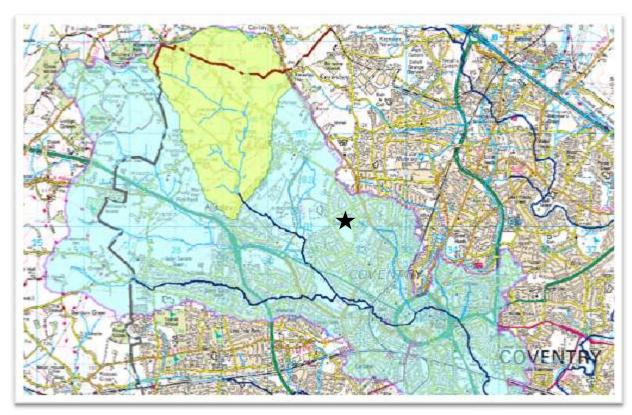
Allesley Flood Risk Management Community Information Event

7th November 2019

Warwickshire

A wet summer?



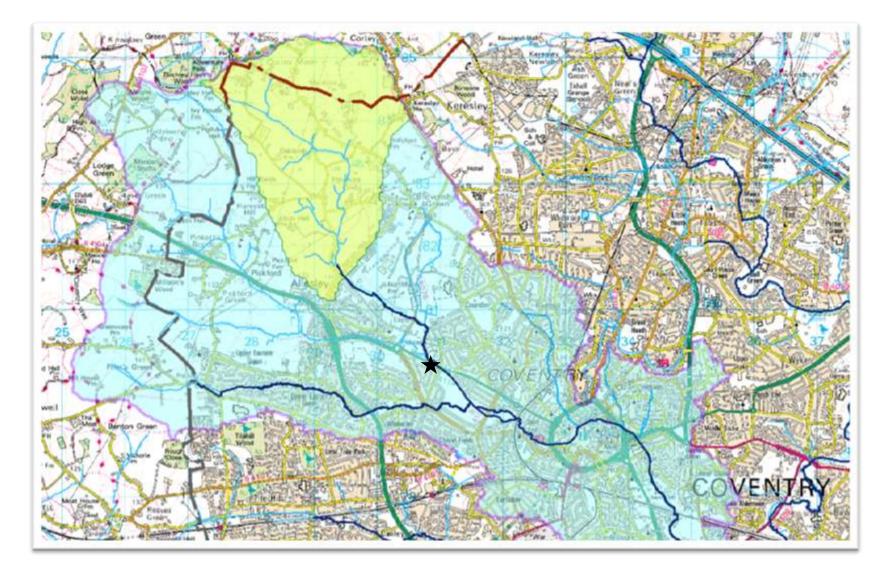
Wet weather inspection, 24th September 2019 38.6mm rainfall over 2 days

Rainfall Data, Bablake Weather Station

385.4mm of rain June to September

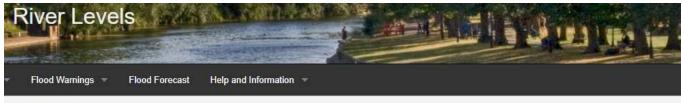
Wettest June – September since 2007 (396.4mm)

Only 3 such periods have been wetter since 1870 (1878, 1879 and 2007).



Rainfall comparison with previous flood events

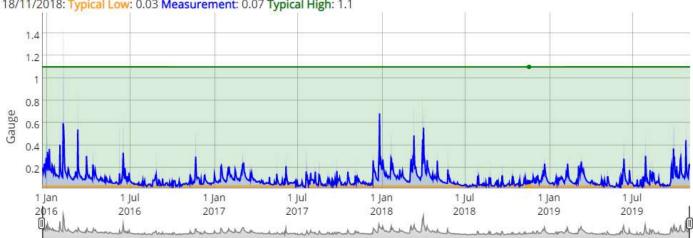
Date	Flooding type	Event rainfall Bablake Weather Station	Notes		
Previous flood events					
14/06/2007	River flooding	69.9mm / 2.75 in	19.8mm the following day		
20/07/2007	River flooding	38.1mm / 1.50 in			
13/12/2008	River flooding	17.4mm / 0.69 in	29.6mm the previous day		
24/11/2012	River flooding	37.4mm / 1.47 in	47.3mm over the previous 4 days		
06/02/2016 07/02/2016	River / surface water flooding	32.2mm / 1.27 in	8.6mm the previous day. 20.2mm the previous 8 days		
16/06/2016	Surface water flooding	27.8mm / 1.09 in	25.4mm the previous 3 days		
Summer 2019 heavy rainfall					
12/06/2019	No flooding	25mm / 0.98 in	22mm on 10 th , 10.2mm on 11 th		
30/07/2019	No flooding	33.4mm / 1.31 in			
24/09/2019	No flooding	20.2mm / 0.80 in	18.4mm the previous day		
28/09/2019	No flooding	33.6mm / 1.32 in			


River level data Holyhead Road Gauging Station

www.riverlevels.uk

RY HOLLYHEAD RD LVL

River Sherbourne at Coventry Hollyhead Rd LVL



Current River Level: # 0.175m, falling

Within the usual range for this location

Current level recorded at 4:00am, Tuesday 5th November GMT

Change from previous measurement: -0.019m (recorded at 6:00pm, Monday 4th November GMT)

18/11/2018: Typical Low: 0.03 Measurement: 0.07 Typical High: 1.1

River level Comparison with previous flood events

Date	Flooding type	Daily rainfall Bablake Weather Station	River Level (post event) Holyhead Road Gauging station			
	Previous flood events					
14/06/2007	River flooding	69.9mm / 2.75 in	1.5m			
20/07/2007	River flooding	38.1mm / 1.50 in	1.4m			
01/08/2008	River flooding	28.6mm / 1.13 in	0.31m			
13/12/2008	River flooding	12.4mm / 0.49 in	1.44m			
24/11/2012	River flooding	37.4mm / 1.47 in	1.59m			
06/02/2016	River / surface water	32.2mm / 1.27 in	1.44m			
07/02/2016	flooding		1.34m			
16/06/2016	Surface water flooding	27.8mm / 1.09 in	0.69m			
Summer 2019 heavy rainfall						
12/06/2019	No flooding	25.0mm / 0.98 in	0.48m			
30/07/2019	No flooding	33.4mm / 1.31 in	0.51m			
24/09/2019	No flooding	20.2mm / 0.80 in	0.38m			
28/09/2019	No flooding	33.6mm / 1.32 in	0.59m			

River levels have not been recorded over 1m at Holyhead Road since 7th February 2016

- the last river flooding event

Significant improvements made...

...but more work to be done

Sam Hooley, Capita

MODELLING EXISTING FLOODING

Flood Issues – Surface and River

Model run for a 1% Chance of Flooding in Any Given Year

Water

Max Flood Extent – 9 hours

- Surface water causes flooding at the onset, later combined with high flows from the river
- Flow path from Washbrook Lane through the properties at Browns Lane to the gardens of Butt Lane
- Following threshold survey results 31 residential and 1 business properties are shown as flooding in this scenario

MODELLING OF OPTIONS

Options Carried Forward For Further Investigation:

Option 5: Wall along Washbrook Lane Option 8: Reinstatement of the off-line Mill Pond with control structure, North of Hawkes Mill Lane Option 9: Cattle grids or flow deflectors down Washbrook Lane

Option 11: Measures preventing flow route through houses on Browns Lane

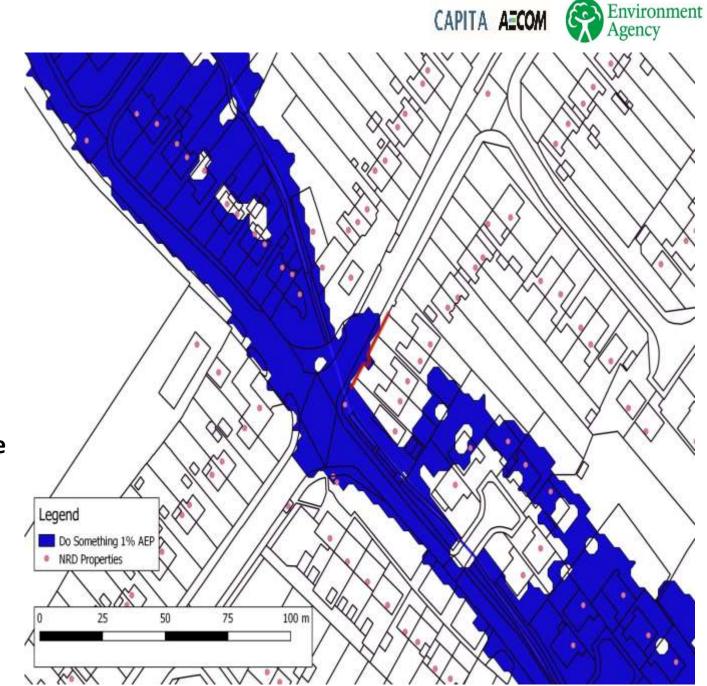
Additional options included in the economic appraisal but not included in hydraulic modelling: Option 12: Property Flood Resilience measures Option 14: Combination of Option 11, Option 12 and Natural Flood Management measures

Option	Description	Residential properties protected in the
		1% Chance of Flooding in Any given
		Year (compared to current situation)
5	Option 5 (Wall at Washbrook Lane)	- 1
8	<i>Option 8 (Reinstatement of Mill Pond north of Hawkes Mill Lane)</i>	0
9	<i>Option 9 (Cattle grids or flow deflectors down Washbrook Lane)</i>	0

Based on these results 'Option 5', 'Option 8' & 'Option 9' were not taken forward to the economic appraisal as technically they do not reduce the risk of flooding

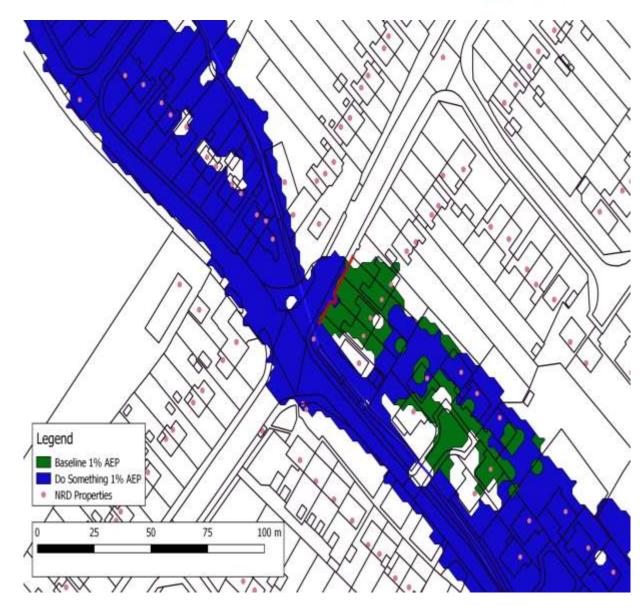
Options Modelled And Carried Forward: CAPITA AECO

Option	Description	Residential properties protected in
		the 1% Chance of Flooding in Any
		Year given (compared to current
		situation)
11	Option 11 (Measures preventing flow	7
	route through houses on Browns Lane)	
12	Option 12 Property Flood Resilience	31
	measures	
14	Option 14 (Measures preventing flow	31
	route through houses on Browns Lane,	
	Property Flood Resilience (PFR) and	
	Natural Flood Management)	


The results show these options can reduce the risk of flooding to properties and may be financially viable to progress

MODELLING OUTPUTS

Results - No Measures In



Modelling Output for Measures preventing flow route through houses on Browns Lane

Combined Modelling output

Combination of preventing flow off Browns Lane and Property Flood Resilience is the preferred option we plan to take forward

Next Steps

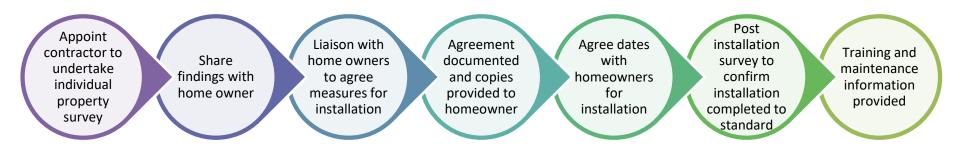
Melanie Dinnis

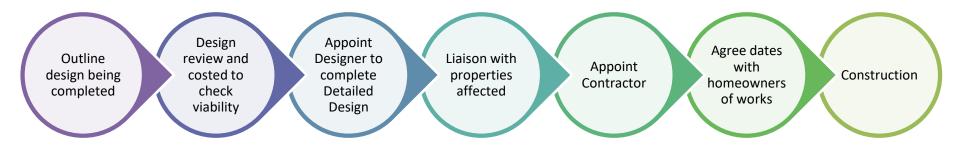
Environment Agency, Project Manager

Options being taken forward

 Property Flood Resilience Measures

• Natural Flood Management


 Measures Preventing Flow Route through houses on Browns Lane



Next Steps

Property Flood Resilience

Measures Preventing Flow Route through Houses on Browns Lane

Door Protection

Protection from Other Flow Routes

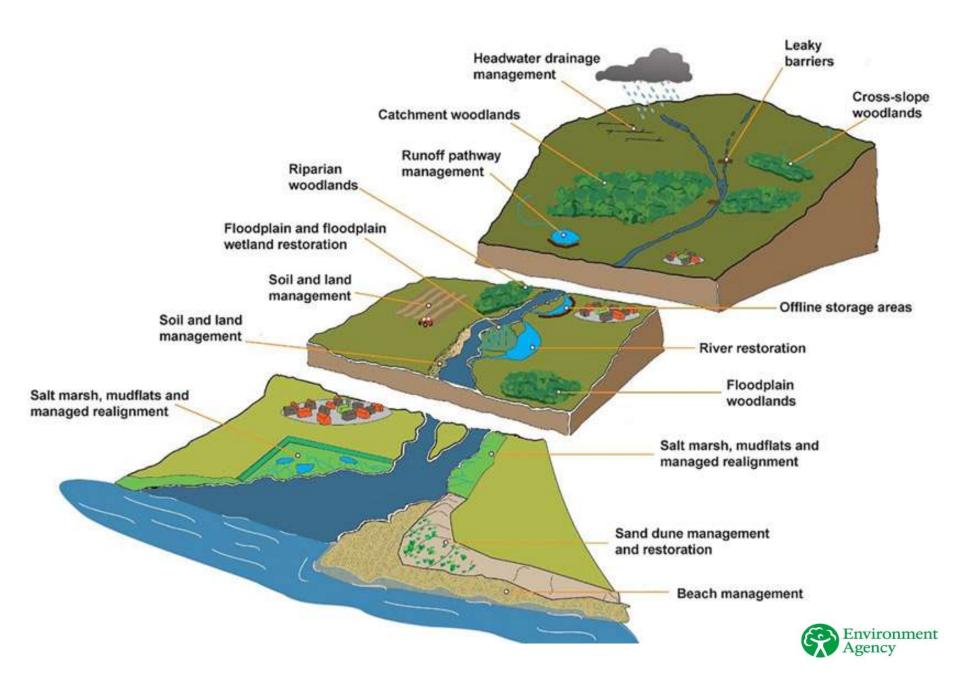
Non-return Valves

Airbricks

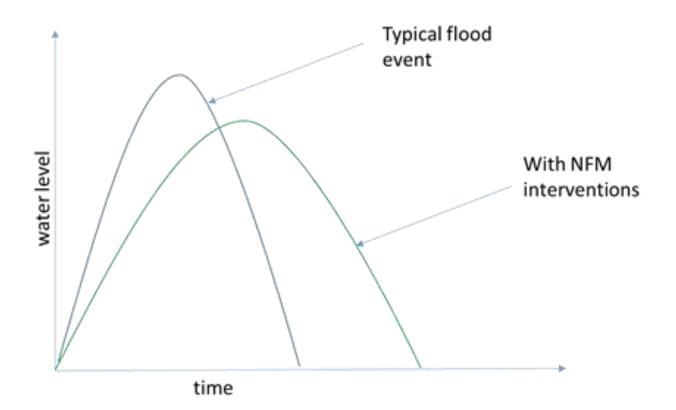
Sump and Pump

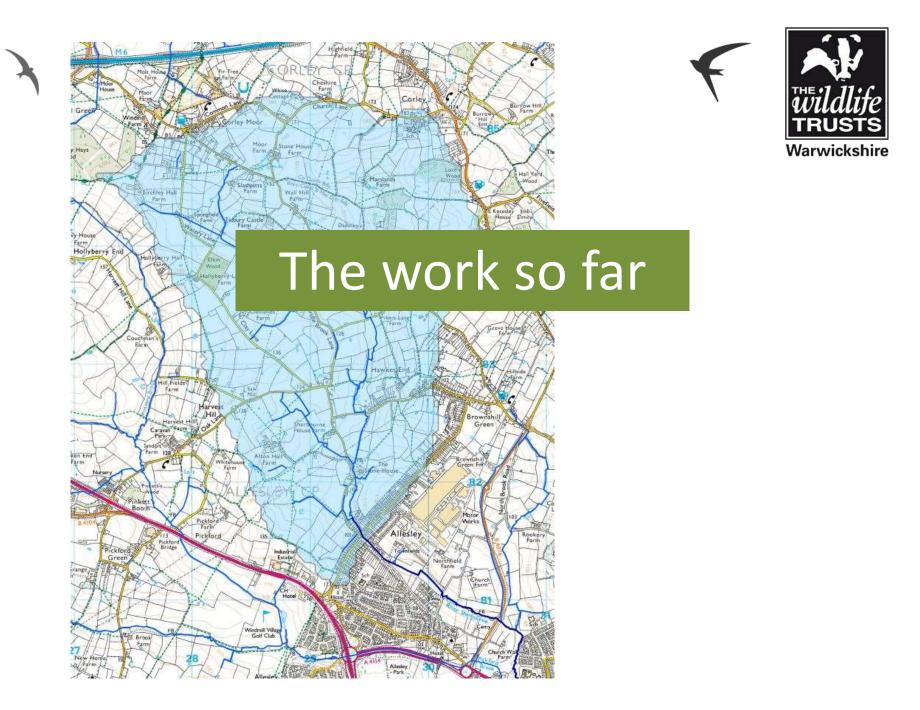
Push Fit Valve

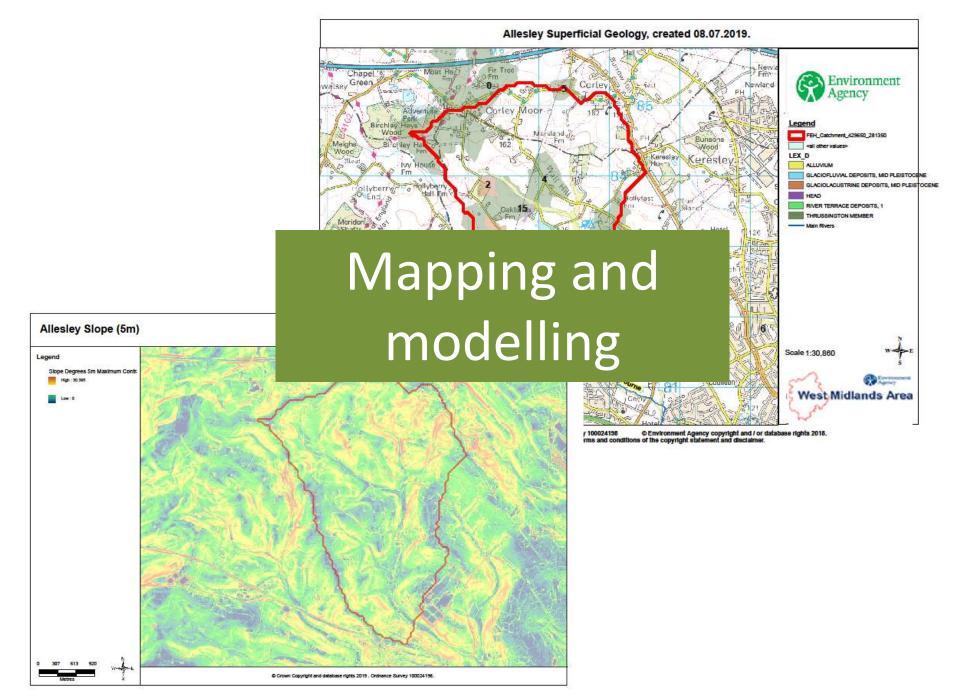
Approvals Prior to Installation


Upper Sherbourne Natural Flood Management

What is natural flood management?


- 1. Slowing water down by installing woody debris, planting hedges and creating buffer strips.
- 2. Storing water by creating capacity in ponds, scrapes, swales and ditches so that they fill and then empty slowly after 12-24 hours.
- 3. Intercepting rainfall Vegetation, especially tree leaves, intercept rainfall so it doesn't reach the ground. Water is then evaporated from the leaves, reducing the volume of flood water. Trees can reduce the amount of water reaching the ground by 25 – 45%.
- 4. Increasing soil infiltration by improving soil structure and reducing compaction, which can increase the volume of water which is stored in the soil.





Hydrograph comparison

Walkover surveys

Landowner engagement

NFM installation

NFM installation

HITACH

Monitoring, maintaining and improving

Further NFM planning

Further NFM planning

Monitoring results

What Happens Next?

By Spring 2021

- Property Flood Protection Surveys
- Natural Flood Management install
- Engagement with home owners
- Liaison with home owners to agree Property Flood Resilience measures
- Spring 2020 Appoint Contractor

• Complete install Property Flood Resilience measures

Thanks for Listening

To view this information after the event,

please visit:

www.coventry.gov.uk/SherbourneFRM

Coventry City Council contact:

Neal.Thomas@coventry.gov.uk

Warwickshire Wildlife Trust contact:

Nick.Martin@wkwt.org.uk

Environment Agency contact:

Melanie.Dinnis@environment-agency.gov.uk

Community representative contact: Darren Male <u>gsl1stcoventry@gmail.com</u>