

EMISSIONS MONITORING SURVEY

(on behalf of Advanced Environmental Consulting Limited)

Prepared for:

Aggregate Industries UK Limited. Doyle Drive Coventry West Midlands CV6 6NW

Permit Number	:
Variation Number	:
Installation	: Aggregate Industries Coventry Coating Plant
Visit Details	: Emissions Monitoring 2020
Job Number	: P4694
Report Number	: R001
Report Issue Date	: 7 th January 2021
Survey Dates	: 18 th November 2020

Prepared by:

Environmental Compliance Limited

Unit G1 Main Avenue Treforest Industrial Estate Pontypridd CF37 5BF.

Tel: 01443 841760 Fax: 01443 841761

I	Report Issue:	FINAL		
Rep	ort Prepared by:	Report Reviewed & Approved by MCERTS Level Two Technical Endorsements TE1, TE2, TE3 & TE4		
	Paul Calland	Name:	Andy Barnes	
Name:		MCERTS No:	MM 03 235	
		Signature:	SPe	
Date:	14 th December 2020	Date:	7 th January 2021	

This report is not to be used for contractual or engineering purposes unless this approval sheet is signed where indicated by the approver and the report is designated "FINAL".

Installation Name Visit Details Survey Dates Report Issue Date : Aggregate Industries Coventry Coating Plant : Emissions Monitoring 2020 : 18th November 2020 : 7th January 2021

This report has been prepared by Environmental Compliance Limited (ECL) in their professional capacity as Environmental Consultants. The contents of the report reflect the conditions that prevailed and the information available or supplied at the time of its preparation. The report, and the information contained therein, is provided by ECL solely for use and reliance by the Client in performance of ECLs duties and liabilities under its contract with the Client. Until ECL has received payment in full as detailed in the quotation or contract the contents of this report remain the legal property of ECL. The contents of the report do not, in any way, purport to include any manner of legal advice or opinion.

Any operating information and CEMS data used in this report has been supplied by the client.

This report should not be reproduced, (except in full) without the written approval of the laboratory.

Should the Client wish to release this report to a Third Party for the party's reliance, Environmental Compliance Ltd may, at its discretion, agree to such release provided that:

- Environmental Compliance Ltd gives written agreement prior to such release and ECL has received payment in full for all works/services undertaken;
- By release of the report to the Third Party, that Third Party does not acquire any rights, contractual or otherwise, whatsoever against Environmental Compliance Ltd and, accordingly, Environmental Compliance Ltd assume no duties, liabilities or obligations to that Third Party;
- Environmental Compliance Ltd accepts no responsibility for any loss or damage incurred by the Client or for any conflict of Environmental Compliance Ltd interests arising out of the Clients' release of this report to the Third Party.

In the event that a report is revised and re-issued, the client shall ensure that any earlier versions of the report, and any copies thereof, are void and such copies should be marked with the words "superseded and revised".

Opinions and Interpretation expressed within this report are outside the scope of the UKAS accreditation.

MCERTS requirements mean that comparison of results with emissions limit values is not permitted within this report.

: R001

Installation Name Visit Details Survey Dates Report Issue Date

: Aggregate Industries Coventry Coating Plant : Emissions Monitoring 2020 : 18th November 2020 : 7th January 2021

TABLE OF CONTENTS

Section	Description	Page Number
	Document Control Sheet	
PART 1	EXECUTIVE SUMMARY	4
1	MONITORING OBJECTIVES	4
1.1	Monitoring Results	5
1.2	Operating Information	6
2	MONITORING DEVIATIONS	7
PART 2	SUPPORTING INFORMATION	8
3	SAMPLING STAFF DETAILS	8
4	SAMPLING PROTOCOLS / METHODOLOGIES	9
5	SAMPLE POINT DESCRIPTIONS	10
	EQUIPMENT IDs	11
	TABLES	13
	VELOCITY TRAVERSE PROFILES	16
	FIELD CALIBRATION AND SAMPLING DATA	18
	LABORATORY ANALYSIS RESULTS	21
	UNCERTAINTY CALCULATIONS	23

: R001

Installation Name Visit Details Survey Dates Report Issue Date : Aggregate Industries Coventry Coating Plant : Emissions Monitoring 2020 : 18th November 2020 : 7th January 2021

PART 1 - EXECUTIVE SUMMARY

1 Monitoring Objectives

Environmental Compliance Ltd (ECL) was commissioned by Advance Environmental Consulting Limited, to undertake an emission monitoring survey for **Aggregate Industries UK Limited** at their **Coventry Coating Plant**. This report presents the findings of the study.

The monitoring at this installation was carried out in accordance with our quotation reference **AM/4514/Q003**, for compliance check monitoring of emissions to air. The substances requested for monitoring at each emissions point are listed below:

	Emission Point Identification
Substances to be monitored	Coating Plant Bag Filter Exhaust
Particulates	• U
Velocity / Flowrate	• U

- Denotes the substances to be monitored.
 - Denotes UKAS accreditation is held for monitoring that substance, but does not mean that it has been claimed which will depend on whether the testing could be completed in accordance with the Standard Reference Method.

Special Requirements: Normal Operating Conditions.

Aggregate Industr	ies UK Limited		Installation Name	: Aggregate Industries Coventry Coating Plant
Permit No	:		Visit Details	: Emissions Monitoring 2020
Variation No	:	Bood	Survey Dates	: 18th November 2020
Report Ref	: P4694	: K001	Report Issue Date	: 7th January 2021

1.1 Monitoring Results

Emission Point Reference	Substance to be Monitored	Emission Limit Value	Periodic Monitoring Result	Units	Uncertainty %	Reference Conditions 273 K, 101.3 kPa	Date of Sampling	Start and End Times	Monitoring Method Reference	Accreditation Claimed For Test Result	Tick if non- conforming test (see Section 2	Operating Status
	Particulates \$	50	7.07	mg/m ³	13	STP & Wet Gas		10:29 – 10:59	BS EN 13284-1:2017 & MID	UKAS / MCERTS	✓	
Coating Plant	Particulates \$	50	5.56	mg/m³	14	STP & Wet Gas	10/11/2020	11:06 – 11:36	BS EN 13284-1:2017 & MID	UKAS / MCERTS	✓	
Bag Filter	Volumetric Flowrate		9.4027	m³/sec	5	Stack Conditions	18/11/2020	09:00 - 09:16	BS EN 16911-1:2013 & MID	UKAS / MCERTS	✓	Normal
Exhaust	Volumetric Flowrate		7.1799	m³/sec	6	STP & Wet Gas		09:00 - 09:16	BS EN 16911-1:2013 & MID	UKAS / MCERTS	~	

The volumetric flowrate shown above is that from the initial pitot traverse.

Any other flow measurements made during isokinetic sampling and/ or repeat traverses are shown later in the tables section.

Notes

Emission Limit Value Periodic Monitoring Result Uncertainty Reference Conditions	The emission limit value is that stated in the permit and will be expressed as a concentration or a mass emission. The result given is expressed in the same terms and units as the emission limit value. The uncertainty associated with the quoted result is at the 95% confidence interval. The Uncertainty results DO NOT take into account the effect of the sample location limitations. All results are expressed at 273 K and 101.3kPa. The oxygen and moisture corrections are stated.
Monitoring Method Reference	The method stated is in accordance with the Environment Agency Technical Guidance Note M2, or other method approved by the Environment Agency.
Accreditation for use of Method	The details indicate the accreditation for the use of the complete monitoring method, e.g. MCERTs, UKAS. If use of the method is not accredited " NA" is stated.
Operating Status	The details indicate the feedstock and the loading rate of the plant during monitoring.
\$	Chemical Analysis on sample reagents was performed by an External Laboratory as detailed in Section 4
NU	UKAS Accreditation Held but UKAS Accreditation cannot be claimed for the test as sampling did not comply with the Standard Reference Method (SRM), see section 2 & 5
NA	Method is NOT UKAS Accredited.

Aggregate Industri	es UK Limited		Installation Name	: Aggregate Industries Coventry Coating Plant
Permit No	:		Visit Details	: Emissions Monitoring 2020
Variation No	:		Survey Dates	: 18th November 2020
Report Ref	: P4694	: R001	Report Issue Date	: 7th January 2021

1.2 Operating Information

Any operating information and CEMS data below has been supplied by the client.

Emission Point								Comparison of C	perator CEMS and	Periodic Monito	ring Results	
Reference	Process Type	Process Duration	Fuel	Feedstock	Abatement	Load	Parameter	Date	Time	CEMS Results	Periodic Monitoring Results	Units
Coating Plant Bag	Datah	As Dogwirod	Kanagana	Various grades of	Deg Filter	25 +//	Total Particulate	19/11/2020	10:29 – 10:59	4.1319	7.07	mg/m³
Filter Exhaust	Balch	As kequired	Kerosene	aggregate	bag ritter	35 VIII	Matter	18/11/2020	11:06 – 11:36	2.1076	5.56	mg/m³
PC Ci <u>N</u> e	CME Type – D urrent Cal Facto <u>otes:</u>	F 990 or – 1.635										
Proc Proc Fuel Feed Abat Load CEM	ess Type ess Duration Istock tement I Is Data	State whet If a batch p If applicab State the fe State the ty State the n Enter this c	her the process process, state the le, state the fuel eedstock type /pe and whether ormal load, thro lata for each CE	is a continuous or b e duration, frequenc type If not applical r operational during oughput or rating of M installed if it is h	atch process. y and details of ble state "NA" monitoring. If the plant as been provid	of the portion of the portion of the portion of applicable ed by operato	of the batch sampled e state "NA" r otherwise state "N	d. If continuous sta	te "NA" ED)			

Enter this data for each CEM installed if it is has been provided by operator otherwise state "NP" (NOT PROVIDED)

594 : R001

Installation Name Visit Details Survey Dates Report Issue Date : Aggregate Industries Coventry Coating Plant : Emissions Monitoring 2020 : 18th November 2020 : 7th January 2021

2 Monitoring Deviations

The objective of the survey was to measure the concentrations of pollutants from the processes / locations as detailed in Section 1. This survey meets the requirements of the site's **PPC Permit Number:** ... where UKAS and MCERTS accreditation has and could be claimed for the testing in the monitoring results table.

There were modifications to the sampling procedures (TPDs) listed in section 4. , these are as follows:-

Due to high duct gas velocity, in order to maintain isokinetic sampling, it was necessary to use a nozzle with diameter smaller than the recommended minimum of 8mm minimum stated in BS EN 13284-1:2017. Note that there is no absolute minimum nozzle size stated in the standard, as long as the uncertainty of the nozzle area is <5%. So this does not need to be described as a non-conforming test.

There were no substance deviations from the original and agreed emissions monitoring schedule.

There were non-conforming tests, as follows.

Line A could not be accessed due to a mesh guard around the bag house blocking access to the sampling port. Both flowrate and particulate samples were taken from a single line. TPM samples were further non-conforming, as due to limited rear clearance, the sample train could only be deployed at a single point on the sample line without overhanging the platform.

The Uncertainty of the reported concentrations for these pollutant results DOES NOT take into account the effect of non-conformities or sample location limitations.

Homogeneity tests have not been completed at this location, such tests are not applicable (as the duct area is $< 1m^2$) and were not requested by the client.

3

DO

: R001

Installation Name Visit Details Survey Dates Report Issue Date

PART 2 – SUPPORTING INFORMATION

: Aggregate Industries Coventry Coating Plant

: Emissions Monitoring 2020

: 18th November 2020

: 7th January 2021

SAMPLING STAFF DETAILS

Site Sampling Team

Names of Site Team	Dates on Site	MCERTS No.	LEVEL	Technical Endorsements
Paul Hannah	18 th November	MM 03 477	2	TE1, TE2, TE3, TE4
Lee Harper	2020	MM 17 1423	1	

Report Reviewer

Name	MCERTS No.	LEVEL	Technical Endorsements
Andy Barnes	MM 03 235	2	TE1, TE2, TE3, TE4

Technical Endorsement Key:-

- TE1 Isokinetic Particulates, Temperature & Velocity Profiles, Oxygen.
- TE2 Isokinetic Extractive Pollutants:- Metals, Dioxin & Furans, PAHs, PCBs, HCl, HF.
- TE3 Non-Isokinetic Extractive Pollutants:- Speciated VOCs, HF, HCl, Cyanide.
- TE4 Continuous Analysers (Combustion Gases):- TVOC, CO, NOx, SO2.

: R001

Installation Name Visit Details Survey Dates Report Issue Date : Aggregate Industries Coventry Coating Plant : Emissions Monitoring 2020 : 18th November 2020 : 7th January 2021

4 SAMPLING PROTOCOLS / METHODOLOGIES

Details of the substances monitored, the standard methods used and the Environmental Compliance Limited Technical Procedures used during this survey are shown in the table below. Detailed sampling protocols are included in a separate document which will be sent with the report.

In all cases, where analysis of collected samples was required, the analysis was by a subcontract laboratory. Details of the sub-contract laboratory are shown on the analysis certificates in this report. The UKAS/MCERTs accreditation status of the analysis is also indicated on the certificates.

Any required modifications to the Technical Procedure Documents (TPDs) specified below will be detailed in section 2 of this report.

Determinand	External Reference Method	ECL Technical Procedure Number		
Velocity and Flowrate	BS EN 16911-1:2013 & MID	ECL/ TPD/ 022A		
Particulates (MST)	BS EN 13284-1:2017 & MID	ECL / TPD / 027		

: R001

Installation Name Visit Details Survey Dates Report Issue Date : Aggregate Industries Coventry Coating Plant : Emissions Monitoring 2020 : 18th November 2020 : 7th January 2021

5 SAMPLE POINT DESCRIPTIONS

The homogeneity test is applicable to combustion processes, but may also be requested by the regulator for non-combustion processes.

Homogeneity testing has not been completed at this location.

The test is not usually required for stacks with sampling plane areas of $< 1m^2$ (below 1.13m in diameter for circular ducts).

The Uncertainty of the reported concentrations for these pollutant results DOES NOT take into account the effect of non-conformities or sample location limitations.

The sample location that was monitored is detailed below:-

Coating Plant Bag Filter Exhaust

The stack diameter is 0.90m and the sample platform width back from the sample port is 0.5m.

Two sample ports are located on the stack at 90 degrees to each other and are located on the same plane.

These sample ports are located at a height of approximately 1.4m from the working sample platform.

Sampling for Particulates was carried out using an out-of-stack filter system.

Access to the sample platform was attained by means of permanent caged ladders.

Aggregate Industries UK Limited Permit No : ... Variation No : ... Report Ref : P4694

: R001

Installation Name Visit Details Survey Dates Report Issue Date : Aggregate Industries Coventry Coating Plant : Emissions Monitoring 2020 : 18th November 2020 : 7th January 2021

EQUIPMENT IDs (Pre site checklist from SSP)

: R001

Installation Name Visit Details Survey Dates Report Issue Date : Aggregate Industries Coventry Coating Plant : Emissions Monitoring 2020 : 18th November 2020 : 7th January 2021

PRE SITE EQUIPMENT CHECKLIST/ EQUIPMENT USED (Completed before departure to site and when on site in full)

Completed before depart	ure to s	ite and w	nen on si	te in tuil)	1	1	1	1	
Equipment	Equip. Type	ID No:	ID No:	ID No:	ID No:	ID No:	ID No:	ID No:	ID No:
MST console/pump		U001							
MST Nozzle set		021-027							
MST "S" Type Pitot		635							
MST Probe		135							
MST Hot Box		336							
MST Impinger Arm	E001	657							
Barometer	1	1221							
Site Balance	1	088							
Site Check weights	1	276							
Site Check weights		277							
Horiba									
Heated Probe / Filter									
Chiller	E002								
MFC									
Heated Line									
FID									
Heated Line	FUU3								
Heated Probe / Filter	LUUJ								
Testo	E004								
FTIR									
Heated Probe / Filter	E005								
Heated Line									
Stackmite									
"L" Type Pitot		488							
Digital Manometer		1205							
Stack Thermocouple	E006	1208							
Thermocouple Reader		1206							
Nozzle Set									
Workhorse Pumps									
Stack Thermocouple	F007								
Tube Thermocouple									
Meter Thermocouple									
High Vac Gauge									
Dioxin Thermocouple									
•									

	Quantity of Ice Required / Used for Survey	2	Bags (2kg bags)
--	--	---	-----------------

Aggregate IndustriesUK LimitedPermit No: ...Variation No: ...Report Ref: P4694

: R001

Installation Name Visit Details Survey Dates Report Issue Date : Aggregate Industries Coventry Coating Plant : Emissions Monitoring 2020 : 18th November 2020 : 7th January 2021

TABLES

: R001

Installation Name Visit Details Survey Dates Report Issue Date : Aggregate Industries Coventry Coating Plant : Emissions Monitoring 2020 : 18th November 2020 : 7th January 2021

Table 1 – Total Particulate Matter

Emission Parameter	Units	TPM 1	Blank
Stack Diameter	metres	0.90	
Area of Sample Plane	m ²	0.636	
Moisture Content	%	3.59	
Oxygen Content	%	20.90	
Stack Temperature	°C	78	
Gas Velocity (as Measured. Adjusted for Smooth Walls)	m/sec	14.0060	
Gas Velocity (Reference Conditions)	m/sec*	10.7634	
Volumetric Flowrate (as Measured)	m ³ /sec	8.9102	
Volumetric Flowrate (Reference Conditions)	m ³ /sec*	6.8474	
Dry Gas Molecular Weight	g/gmole	28.8376	
Sample Date		18/11/2020	
Sample Period		10:29 - 10:59	
Sample Volume (reference Conditions)	m ³ *	0.586	0.586
Isokinetic Sampling Rate	%	105.71	
Sample Reference (ECL ID)	ECL/20/	6355 & 6356	6359 & 6360
Mass of Particulate Matter Collected	mg	4.14	0.54
Concentration of Particulate Matter	mg/m ³ *	7.07	0.92
Emission Rate of Particulate Matter	kg/hr	0.17	
Expanded Uncertainty (% Relative)	%	13	
Emission Limit Value (ELV)	mg/m ³ *	50	
Blank Concentration as Percentage of ELV	%		1.84

Data Recorded from Bag Filter Exhaust - Coventry

*Reference Conditions (273K, 101.3kPa, Wet Gas)

: R001

Installation Name Visit Details Survey Dates Report Issue Date : Aggregate Industries Coventry Coating Plant : Emissions Monitoring 2020 : 18th November 2020 : 7th January 2021

Table 2 – Total Particulate Matter

Emission Parameter	Units	TPM 2	Blank
Stack Diameter	metres	0.90	
Area of Sample Plane	m ²	0.636	
Moisture Content	%	3.37	
Oxygen Content	%	20.90	
Stack Temperature	°C	76	
Gas Velocity (as Measured. Adjusted for Smooth Walls)	m/sec	14.4000	
Gas Velocity (Reference Conditions)	m/sec*	11.1137	
Volumetric Flowrate (as Measured)	m ³ /sec	9.1609	
Volumetric Flowrate (Reference Conditions)	m ³ /sec*	7.0702	
Dry Gas Molecular Weight	g/gmole	28.8376	
Sample Date		18/11/2020	
Sample Period		11:06 - 11:36	
Sample Volume (reference Conditions)	m ³ *	0.654	0.654
Isokinetic Sampling Rate	%	114.32	
Sample Reference (ECL ID)	ECL/20/	6357 & 6358	6359 & 6360
Mass of Particulate Matter Collected	mg	3.64	0.54
Concentration of Particulate Matter	mg/m ³ *	5.56	0.83
Emission Rate of Particulate Matter	kg/hr	0.14	
Expanded Uncertainty (% Relative)	%	14	
Emission Limit Value (ELV)	mg/m ³ *	50	
Blank Concentration as Percentage of ELV	%		1.65

Data Recorded from Bag Filter Exhaust - Coventry

*Reference Conditions (273K, 101.3kPa, Wet Gas)

Aggregate Industries UK Limited Permit No : ... :... Variation No Report Ref : ... : P4694

: R001

Installation Name Visit Details Survey Dates Report Issue Date : Aggregate Industries Coventry Coating Plant : Emissions Monitoring 2020 : 18th November 2020 : 7th January 2021

VELOCITY TRAVERSE PROFILES

Aggregate Industrie	s UK Limited		Installation Name	: Aggregate Industries Coventry Coating Plant
Permit No	:		Visit Details	: Emissions Monitoring 2020
Variation No	:		Survey Dates	: 18th November 2020
Report Ref	: P4694	: R001	Report Issue Date	: 7th January 2021

		Environmental Co	ompliance Limited			Traverse Data Profoma Date of Measurement			18/11/2020						
Company	Advance Er	nvironmental	Stack Diameter	Port A (mm)	900	Average Stack Dia	ameter (mm)	900	Pitot tube coeffici	ent	1.00				
Site	Aggregate Inc	lustries UK Ltd	Stack Diameter	Port B (mm)		Port Length (mm)		90	Pitot Id		488		Diagram/ Description of	Cross Section of Stack/Du	ıct
Location	Cov	entry	Duct Length Por	t A (mm)		Average Duct Len	gth (mm) L		Stack Thermocour	ole ID	1208				
Stack	Bag Filte	er Exhaust	Duct Length Por	t B (mm)		Duct width (mm)	В		Stack Temp Reade	er ID	1206				
Job No	P4	693	Duct Length Por	t C (mm)		Barometric Pressu	ıre. (mb)	1000	Manometer ID		1205				
Operators	PH	, LH	Duct Length Por	t D (mm)		Ave Static Press. (mm H ₂ 0)	2.00	Barometer ID		1221				
							Static Pressure Readings (mm H ₂ O)			\sim	_				
Pre - Traverse C	hecks Carried Ou	t	Time	Pass/ Fail		Smeeth Wel		Port A	Port B	Port C	Port D				
Pre - Traverse P	ITOT Visual Inspe	ction	09:00:00	Pass		Smooth war	5 -	2.00	2.00						
Pre - Traverse P	ITOT Leak Check		09:02:00	Pass	,								/	\	
					9								1	1	
Port/	Distance to	Time	Tem	perature Readings	(°C)	(ΔP)	Pitot Readings (mr	n H ₂ O)	Average Temp.	Average (ΔP)	Swirl Test				
Point	Point (mm)		1	2	3	1	2	3	(°C)	(mm H ₂ O)	^O From Reference				
B1	60	09:04:00	80.0	80.0	80.0	10.80	11.10	11.50	80.0	11.13	7				
B2	225	09:06:00	80.0	80.0	80.0	11.20	10.90	11.00	80.0	11.03	9				
B3	675	09:08:00	80.0	80.0	80.0	10.50	10.80	10.50	80.0	10.60	7				
B4	840	09:10:00	80.0	80.0	80.0	10.60	11.20	10.90	80.0	10.90	8				
						1									
						-									
						1									
						1									
			80.0	80.0	90.0	11.20	11.00	11.40	320.0	43.7	Total	Notes			
Blockage	Check @ A1	00.12.00	00.0	00.0	80.0	11.20	11.00	11.40	320.0	43./	TOTAL	Notes			
(L-Type	Pitot Only)	05.12.00	Difference	W from Initial 2	0.00	Difference	dii 9/ facana Initial 2	0.0	80.0	10.6	Max	including e	cpected or actual deviations from	n procedures / non-conformities	5
			Difference < 3	5 % Irom mitual :	0.00	Difference < 5	% IFOIII IIIIIIdi ;	0.60	80.0	10.0	Average	Onlyana	the could be terrine of our	والمستعلمية والمستعد والمستعد والمستعد	
	1 (C 1 D't t	0.1.)			1				00.0	10.9	Average	Unity one	ime could be traversed and	sampled due to stack and p	pracionni setup.
Stagnation Chec	K (5-type Pitot		Time	Keading								. L			
Static Pressure	via Positive Leg (n	nm H ₂ O)					Average temp (K	.)		35	3.000	Mesh gua	arging around bag house l	DIOCKED ACCESS. See site p	JHOTOS
Static Pressure	/ia Negative Leg (mm H ₂ O)								-					
Difference (Pa)	< 1 mm H ₂ 0 ?						Suitability of Sampling Position Actual Stack Conditions		ck Conditions						
-					Highest:lowest flow pressure ratio < 9:1? 1.07:1				.07:1						
Post - Traverse	Checks Carried O	ut	Time	Pass/ Fail			Maximum deviat	ion of flow from axis < 15°? 9		9	Complia	nce With Positional Requ	irements?		
Post - Traverse I	PITOT Visual Insp	ection	09:14:00	Pass			X-sectional area	for stacks = πr2		0.64 m ²					
Post - Traverse	PITOT Leak Check	<u>(</u>	09:16:00	Pass			X-sectional area	for ducts = $L \times B$	m ²		m ²	Height o	of sample ports from P	latform	1.4m
		-		Suitability of Position for Sampling			OK	Number	of sample ports		2				
							•	. 0				Width o	of platform (port back	to handrail)	0.5m
		Stack Moisture		3.48	%	Gas Velocity (as M	easured) Adjusted fo	or Smooth Walls		14.78015	m/sec			· ·· /	
		Measured Oxyge	en	20.9	%	Gas Velocity (Refer	ence Conditions) A	djusted for Smooth	Walls	11.28606	m/sec*	Nearest do	wnstream disturbance	Exit	3.0m
		Measured Carbo	n Dioxide	0	%	Volumetric Flowra	te (as Measured) Ad	justed for Smooth V	Valls	9.40273	m ³ /sec	Nearest up	stream disturbance	Fan	5.0m
	Dry Gas Molecular Weight 28.83600 g/g mole Volumetric Flowrate (Ref Cond) Adjusted for Smooth Walls 7.			7.17988	m ³ /sec*	Disturbance	es are classed as bends, fans or	diameter variations							

*Reference Conditions: 273K, 101.3kPa, Wet Gas

NOTE: Velocity / volume flowrate calculations exclude contributions from the measurement point(s) where swirl > 15°

Aggregate Industries UK Limited Permit No : ... :... Variation No Report Ref : ... : P4694

: R001

Installation Name Visit Details Survey Dates Report Issue Date

: Aggregate Industries Coventry Coating Plant : Emissions Monitoring 2020 : 18th November 2020 : 7th January 2021

SAMPLING DATA

Aggregate IndustriesUK LimitedPermit No: ...Variation No: ...Report Ref: P4694

: R001

Installation Name Visit Details Survey Dates Report Issue Date : Aggregate Industries Coventry Coating Plant : Emissions Monitoring 2020 : 18th November 2020 : 7th January 2021

En	wironmental Con	npliance Limi	ited	PART	ICULATE DATA S	AMPLING PRO	FORMA	Date of	Measurement	18/11/2020				Rins	e Solutions used
														Solution	SOL NO
	ECL/TPD/	(027	Т	Time taken to c	hange Ports?	0	1	Start Time	10:29	1	End Time	10:59	DI Water	4164
				-				-		Test Duration	30	mins		Acetone	4088
	lient	Advance	Invironmental	Stack Profile		Circular	Console id	1001	Barometer id	1221		Impinger 1	H2O		
-	Site	Aggregate In	adustries UK Ltd	Stack Area (n	a ²)	0.64	Pump id	U001	Nozzle Id	021-027	1	SOI/			
lo	cation		wantry	Barometric P	ressure (mb)	1000	Probaid	135	Norrie size	6.02	1	Start Weight (a)	717.2		
51	web ID	Rag Eik	ter Enhaust	Static Pres (r	new H (I)	2	DCH Vd	1.0202	Filtor Id	200620 1966	1	End Woight (g)	717.2		
36	et No.	Bag Fill	DA4 1	Bitot cooffici	ant H ₂ 0)	0.96	AH®	42 56	Riter ID	625	1	End Weight (g)		If moisture was not n	easured and gas was dried before
le	st ivo.		4603	Phot coeffici	ent Oer	0.00	10116	43.30	FILOUTE	033	•	rotar weight (g)	0.5	entering the gas meter	impinger weights must be included
Ja	ND INO	r	4693	Probe Heater	r Setting ("C.)	160	Impinger Id	657	HOT BOX ID	336	4	1	1000	to produce the mo isokinetic calculations	isture concentration used in the If the nas was not dried before it
ECL	Site Staff	P	n, Ln	Hot Box Set	ling ("C)	160	balance id	00				Impinger 2	H20	entered the gas me	er then impinger weights may be
IF SAMPLIN	G FOR PARTICULAT	ES NO LEAK CF	IECKS ARE ALLOW	VED AFTER SAN	APLING HAS START	ED (NOT EVEN IF	IRAIN IS BROKE	EN DOWN)	Silica < 50% Spent	YES		300		included to produc	a nominal 0.1% moisture value.
FOR OTHER S	AMPLING (WITHO	UT PARTICULA	TES) LEAK CHECK	S ARE ALLOWE	D AFTER SAMPLING	G HAS STARTED (B	UT ARE NOT M/	ANDATORY)	at End of Test?		1	Start Weight (g)	743		
	Sample	Leak 1	Leak 2	Leak 3	Leak 4	Leak 5	Total		Original K Fa	actor Settings	1	End Weight (g)	749	Additiona	Moisture Weighings
Start Volume	262889.0								Meter Temp.	15	1	Total weight (g)	6	Item Name	
Final Volume	263476.2								Stack Temp	80	1			Start Weight (g)	
Total Volume	587.2	0.0	0.0	0.0	0.0	0.0	587.2		%Moisture	5.00	1	Impinger3	H2O	End Weight (g)	
Leak Check	First	Second	Third	Fourth	Fifth						-	SOL/		Total weight (g)	0
Leak rate l/min	0					Dry O ₂ ([Atmospheric)	20.90	K factor	2.6	I	Start Weight (g)	814.3		
Vaccom "Ma						Day Corbon Dio	vido 9/	0.01			1	End Wolaht (a)	917.2	Marca Marca	
vaccuii rig	•/				-	Diy Calbon Dio	AUG /6	0.01	Reference Oxygen	n/a		end weight (g)	017.2	item Name	
Time of Check	09:50								Percentage		1	Total weight (g)	2.9	Start Weight (g)	
Set Rate I/min	20	1				Sm	nooth Wa	alle	-					End Weight (g)	
Leak < 2%?	YES					311		1115			-	Impinger 4	Empty	Total weight (g)	0
Trave	rse Point	B3	B3	B3	B3	B3	B3			Total	1	SOL/			
Time/Pc	pint (mins)	0-5	5 - 10	10 - 15	15 - 20	20 - 25	25 - 30				1	Start Weight (g)	500.9	Item Name	
ΔP (r	mm H20)	13.00	13.00	14.00	13.50	12.50	14.00			13.33	1	End Weight (g)	501.6	Start Weight (g)	
K	factor	2.60	2.60	2.60	2.60	2.60	2.60				1	Total weight (g)	0.7	End Weight (g)	
AH (Orifice)	33.80	33,80	36.40	35.10	32.50	36.40			34.67	1			Total weight (g)	0
Mate	r (Tm in)	18.00	18.00	21.00	23.00	25.00	25.00			21.67	1	Impinger 5	Silica		
Motor	(Tm out)	15.00	15.00	16.00	17.00	18.00	18.00			16.50	1	sol/	Jincu	Item Name	
Stack	Temp (Te)	76.00	81.00	77.00	78.00	77.00	77.00			77.67	1	Start Weight (e)	948.9	Start Weight (g)	
Imping	ar T. Outlet	10.00	11.00	11.00	11.00	12.00	12.00			11.17	1	Fad Woight (a)	955.7	End Weight (g)	
Manage	er i Outlet	10.00	0.50	0.50	0.50	0.50	12.00			0.50	1	End Weight (g)	133.7	Total unight (g)	0
vacci	uni(Hg)	-0.30	·0.30	*0.50	-0.30	*0.30	•0.30			-0.30		Total weight (g)	0.0	total weight (g)	0
T	B. '	1	I	1	1	1	1	1	1	Total	1	In the second		Marine Marine	
Trave	rse Point									Total		Impinger 6		rtem Name	
Time/P	oint(mins)				-							SOL		Start weight (g)	
Δ ^p (r	mm H20)											Start weight (g)		End weight (g)	-
K	factor											End Weight (g)		Total weight (g)	0
<u>ΔΗ (</u>	Orifice)			_							1	Total weight (g)	0	-	
Mete	r (Tm in)										1			Item Name	
Meter	(Tm out)										1	Impinger 7		Start Weight (g)	
Stack	Temp (Ts)											SOL/		End Weight (g)	
Imping	er T Outlet											Start Weight (g)		Total weight (g)	0
Vacco	um (" Hg)										1	End Weight (g)			
-												Total weight (g)	0	Item Name	
Trave	rse Point									Total	1			Start Weight (g)	
Time/P	oint(mins)										1	Impinger 8		End Weight (g)	
ΔP (r	mm H20)										1	SOL/		Total weight (g)	0
K	factor	1	1	1		1	1	1	1	1	1	Start Weight (g)			
A12 /	Orifice)			1	1						1	End Weight (g)		Item Name	
Mate	r (Tm in)			1							1	Total weight (g)	0	Start Weight (m)	
Matar	(Tm out)										1	in the second		End Weight (c)	
Meter Cr. 1	Tomm (To)									<u> </u>	1	Total (a)	16.00	Total weight (g)	0
stack	remp (1s)										1	roual (g)	16.90	rotai weight (g)	U
Imping	er I Outlet										1				
Vacci	um (" Hg)										1	PRE-Sample PITO	T Visual Inspection	Post-Sample	Blockage Check (L-type)
											_	Time	09:46	Time	
Trave	rse Point									Total	1	Pass ? (Y/N)	Y	Reading (mm H ₂ O)	
Time/P	oint(mins)										1			Pass (<5%) ?	
ΔP (r	mm H20)	1	1	1	1	1	1	1	1		1	PRE-Sample PI	TOT Leak Check		
K	factor			1							1	Time	09:48	POST-Sample	PITOT Visual Inspection
AH /	Orifice)			1	1	1					1	Pass ? (Y/N)	Y	Time	11:00
Mete	r (Tm in)										1			Pass ? (Y/N)	Y
Meter	(Tm out)										1				
Stack	Temp (Ts)										1			POST-Sam	ale PITOT Leak Check
Impine	er T Outlet										1			Time	11:01
Vacci	um (" Hg)										1			Pass ? (Y/N)	Y

Aggregate IndustriesUK LimitedPermit No: ...Variation No: ...Report Ref: P4694

: R001

Installation Name Visit Details Survey Dates Report Issue Date : Aggregate Industries Coventry Coating Plant : Emissions Monitoring 2020 : 18th November 2020 : 7th January 2021

En	vironmental Con	npliance Limi	ted	PART	ICULATE DATA S	AMPLING PRO	FORMA	Date of	of Measurement 18/11/2020		Rins	e Solutions used			
														Solution	SOL NO
	ECL/TPD/	(027	T	Time taken to c	hange Ports?	0	1	Start Time	11:06	1	End Time	11:36	DI Water	4164
				-				-		Test Duration	30	mins		Acetone	4088
C	lient	Advance F	invironmental	Stack Profile		Circular	Console id	U001	Barometer id	1221		Impinger 1	H2O		
	Site	Aggregate In	dustries UK Itd	Stack Area (n	a ²)	0.64	Pump id	U001	Nozzle Id	021-027	1	SOI/			
Loc	ation	Co	ventry	Barometric P	ressure (mb)	1000	Probe id	135	Nozzle size	6.02	1	Start Weight (g)	717.7	-	
51.0	ak ID	Pag Ell	or Enhaust	Statio Proc. (ner H 0)	2	DCH Vd	1.0202	Filtor Id	107752 1202	1	End Moisht (a)	719.1		
Jia	it No.	Dag Tit	DAA 2	Bitot cooffici	ant H ₂ 0)	0.96	AH®	42 56	Pitet ID	625	1	End Weight (g)	710.1	If moisture was not r	neasured and gas was dried before
ies	it NO.		1(0)	Phot coeffici	ent Oer	0.00	ane i	43.30		033	•	rotar weight (g)	0.4	entering the gas meter	r, impinger weights must be included
Ju FCL C	0 N0	Pi Di	4073	Probe rieate	Setting (°C)	100	Impinger tu	03/	HOL BOX ID	330	4		1100	to produce the me isokinetic calculation	s If the ras was not dried before it
EULS	ate stan	PI	n, LN	Hot Box Set	ling ("C)	160	balance id	00				Impinger 2	H20	entered the gas me	ter then impinger weights may be
IF SAMPLING	S FOR PARTICULAT	ES NO LEAK CH	IECKS ARE ALLOW	VED AFTER SAN	APLING HAS START	ED (NOT EVEN IF	IRAIN IS BROKE	EN DOWN)	Silica < 50% Spent	YES		300		included to produc	e a nominal 0.1% moisture value.
FOR OTHER S	AMPLING (WITHO	UT PARTICULA	TES) LEAK CHECK	S ARE ALLOWE	D AFTER SAMPLING	G HAS STARTED (B	UT ARE NOT M/	ANDATORY)	at End of Test?		1	Start Weight (g)	749		
	Sample	Leak 1	Leak 2	Leak 3	Leak 4	Leak 5	Total		Original K Fa	actor Settings	1	End Weight (g)	756	Additiona	I Moisture Weighings
Start Volume	263509.4								Meter Temp.	15	1	Total weight (g)	7	Item Name	
Final Volume	264176.4								Stack Temp	80	1			Start Weight (g)	
Total Volume	667.0	0.0	0.0	0.0	0.0	0.0	667.0	1	%Moisture	5.00	1	Impinger3	H2O	End Weight (g)	
Leak Check	First	Second	Third	Fourth	Fifth						_	SOL/		Total weight (g)	0
Leak rate l/min	0					Dry O ₂ (Atmospheric)	20.90	K factor	2.6	I	Start Weight (g)	817.2		
Vaccum "He	0					Dry Carbon Dig	rida %	0.01			1	End Waiaht (a)	819.5	Hom Name	
vaccum rig	-9			-		Diy Calbon Dio	dde /s	0.01	Reference Oxygen	n/a		enu weight (g)	017.5	item Name	
Time of Check	11:05								Percentage		1	Total weight (g)	2.3	Start Weight (g)	
Set Rate I/min	20					Sm	ooth Wa	alle	-					End Weight (g)	
Leak < 2%?	YES					011		iiiə			-	Impinger 4	Empty	Total weight (g)	0
Traver	rse Point	B3	B3	B3	B3	B3	B3			Total	1	SOL/			
Time/Po	int (mins)	0-5	5 - 10	10 - 15	15 - 20	20 - 25	25 - 30				1	Start Weight (g)	501.6	Item Name	
∆P (n	nm H20)	14.50	13.00	14.00	14.50	14.50	14.50			14.17	1	End Weight (g)	502.3	Start Weight (g)	
Kf	actor	2.60	2.60	2.60	2.60	2.60	2.60				1	Total weight (g)	0.7	End Weight (g)	
AH (C	Orifice)	37.70	33.80	36.40	37.70	37.70	37.70			36.83	1			Total weight (g)	0
Meter	(Tm in)	26.00	26.00	26.00	26.00	29.00	29.00			27.00	1	Impinger 5	Silica		
Meter	(Tm out)	19.00	19.00	19.00	20.00	21.00	22.00			20.00	1	SOI/		Item Name	
Stack	(minout) Temn (Te)	72.00	76.00	77.00	78.00	79.00	75.00			76.17	1	Start Weight (e)	955.7	Start Weight (a)	
Impine	r T Outlet	11.00	12.00	12.00	13.00	13.00	13.00			12.33	1	End Weight (g)	963	End Weight (g)	
Vacou	m ("Ha)	0.00	0.00	0.00	1.00	1.00	2.00			0.67	1	Total weight (g)	7.2	Total unight (g)	0
Tuccu		0.00	0.00	0.00	-1.00	-1.00	-2.00			-0.07		rotar weight (g)	7.5	Total Weight (g)	0
Transa	no Boint			1						Total	1	Inninger 6		Hom Name	
Tave	ise roun				-					Total	1	impinger 6		field Name	
Time/P	bint(mins)											SOL		Start Weight (g)	
Δ ^ρ (n	nm H20)											Start weight (g)		End weight (g)	
KI	actor											End Weight (g)		Total weight (g)	0
ΔΗ (0	Unifice)										1	I otal weight (g)	0		
Meter	r (Tm in)										1			Item Name	
Meter	(Tm out)										1	Impinger 7		Start Weight (g)	
Stack 1	Femp (Ts)										1	SOL		End Weight (g)	
Impinge	er T Outlet										1	Start Weight (g)		Total weight (g)	0
Vaccu	ım (" Hg)										1	End Weight (g)			
											_	Total weight (g)	0	Item Name	
Traver	rse Point									Total	1			Start Weight (g)	
Time/Pe	oint(mins)										1	Impinger 8		End Weight (g)	
∆P (n	nm H20)										1	SOL/		Total weight (g)	0
Kſ	actor										1	Start Weight (g)			
ΔH (0	Orifice)	1		1	1	1	1	1	1		1	End Weight (g)		Item Name	
Meter	r (Tm in)			1							1	Total weight (g)	0	Start Weight (0)	
Meter	(Tm out)										1			End Weight (g)	
Stack 7	(contraction)						-				1	Total (a)	17.70	Total unight (g)	0
Jack	a T Outlet			-			-		-		1	i oun (p		rotar weight (g)	0
impinge	a i Outlet										1	-			
vaccu	im (* rig)										1	PRE-Sample PITO	Visual Inspection	Post-Sample	Blockage Check (L-type)
-												Time	11:00	Time	
Traver	rse Point									Total		Pass ? (Y/N)	Y	Reading (mm H ₂ O)	
Time/Pe	oint(mins)										1			Pass (<5%) ?	
∆P (n	nm H20)										1	PRE-Sample PI	TOT Leak Check	•	
Kf	actor										1	Time	11:01	POST-Sample	PITOT Visual Inspection
ΔH (0	Orifice)										1	Pass ? (Y/N)	Y	Time	11:37
Meter	r (Tm in)										1	•		Pass ? (Y/N)	Y
Meter	(Tm out)										1				
Stack 1	Temp (Ts)										1			POST-Sam	ple PITOT Leak Check
Impinge	er T Outlet										1			Time	11:39
Vaccu	ım (" Hg)										1			Pass ? (Y/N)	Y

: R001

Installation Name Visit Details Survey Dates Report Issue Date : Aggregate Industries Coventry Coating Plant

: Emissions Monitoring 2020 : 18th November 2020

: 7th January 2021

LABORATORY ANALYSIS RESULTS

Laboratory analysis for Total Particulate Matter was subcontracted to RPS laboratories, a UKAS Accredited Testing Laboratory, Number 0605. RPS does hold UKAS & MCERTS accreditation for this analysis. As required by the MCERTS Performance Standard for Organisations, the analysis results are shown below.

Aggregate Industrie	s UK Limited		Installation Name	: Aggregate Industries Coventry Coating Plant
Permit No	:		Visit Details	: Emissions Monitoring 2020
Variation No	:		Survey Dates	: 18th November 2020
Report Ref	: P4694	: R001	Report Issue Date	: 7th January 2021

Results Summary

Report No.: 20-01062-1

Customer Reference: Not Supplied

Customer Order No: Not Supplied

Customer Sa	ECL/20/6352	ECL/20/6353	ECL/20/6354	ECL/20/6355	ECL/20/6356	ECL/20/6357	ECL/20/6358	ECL/20/6359	ECL/20/6360
RPS Sa	4500	4501	4502	4503	4504	4505	4506	4507	4508
Samp	SOLUTION	FILTER	SOLUTION	FILTER	SOLUTION	FILTER	SOLUTION	FILTER	SOLUTION
Sampl	17/11/2020	17/11/2020	17/11/2020	18/11/2020	18/11/2020	18/11/2020	18/11/2020	18/11/2020	18/11/2020

Determinand	CAS No	Codes	SOP	RL									
particulates		UM	D9	0.04		< 0.04		< 0.04		< 0.04		< 0.04	
particulates		UM	D9	0.5	< 0.5		< 0.5		4.1		3.6		< 0.5

Aggregate Industries UK Limited Permit No : ... :... : ... : P4694 Variation No Report Ref

: R001

Installation Name Visit Details Survey Dates Report Issue Date : Aggregate Industries Coventry Coating Plant : Emissions Monitoring 2020 : 18th November 2020 : 7th January 2021

UNCERTAINTY CALCULATIONS

Aggregate Industries	UK Limited		Installation Name	: Aggregate Industries Coventry Coating Plant
Permit No	:		Visit Details	: Emissions Monitoring 2020
Variation No	:		Survey Dates	: 18th November 2020
Report Ref	: P4694	: R001	Report Issue Date	: 7th January 2021

Stack Reference Bag Filter Exhaust

Measurement Uncertainty Calculations - Velocity at Stack Conditions

measurement oncertainty calculations	Velocity at otdok conditions	
Contribution From	Standard u/c (mm H ₂ O)	
Pitot Calibration Uncertainty Contribution	0.055	Α
Manometer Calibration Uncertainty Contribution	0.055	В
Variation in Actual Pitot reading at sample points	0.24	С
Combined u/c (mm H_2O) =	Combined u/c (mm H ₂ O)	
SQRT $(A/\sqrt{3})^2 + (B/\sqrt{3})^2 + (C/\sqrt{3})^2)$	0.14	
Expanded Uncertainty of Flow Measurements (mm H_2O)	0.29	
	Standard u/c (K)	
Temperature Calibration (K)	1.77	D
Variation in Actual Temp reading at sample points	0.00	Е
Combined u/c of Temp (K)	Combined u/c (K)	
SQRT ((D/ $\sqrt{3^2}$) + (E/ $\sqrt{3}$) ²)	1.02	
Expanded Uncertainty of Temp Measurements (K)	2.04	
Measured Average Velocity (m/s) at Stack Conds	14.85	
Maximum Average Velocity (m/s) at Stack Conds	15.09	
Standard Uncertainty Velocity at Stack Conditions (%)	1.60	
Expanded Uncertainty Velocity (at Stack Conditions)	3.21	(%)

Measurement Uncertainty Calculations - Flowrate at Stack Conditions

Contribution From Area (m2)	Standard u/c (m ²) 0.00636	
Measured Average Flowrate (m ³ /s) at Stack Conds	9.45	
Maximum Average Flowrate (m ³ /s) at Stack Conds	9.70	
Standard Uncertainty Flowrate (m ³ /s) at Stack Conditions (%)	2.62	
Expanded Uncertainty Flowrate (m ³ /s) at Stack Conditions	5.24 (*	%)

Measurement Uncertainty Calculations - Flowrate at STP & Wet Gas

Contribution From	Standard u/c (%)	
Temperature Calibration (K)	0.5	
Barometer Calibration	0.5	
Measured Average Flowrate (m ³ /s) at STP Wet	7.21	
Maximum Average Flowrate (m ³ /s) at STP Wet	7.43	
Standard Uncertainty Flowrate (m ³ /s) at STP Wet	3.02	
Expanded Uncertainty Flowrate (m ³ /s) at STP Wet	6.03 ((%)

Aggregate Industries UK LimitedPermit No: ...Variation No: ...Report Ref: P4694

Installation Name	
Visit Details	
Survey Dates	

: Aggregate Industries Coventry Coating Plant : Emissions Monitoring 2020

: 18th November 2020

: 7th January 2021

Site: Aggregate Industries UK Ltd Location: Bag Filter Exhaust

: R001

$u_{mass} = \sqrt{\sum (u_{filter})^2 + (u_{solution})^2}$
--

			Recovered	LAB Method	Uncert (%) $K = 2$	Standard	Uncertainty	Combined
Determinand	Filter	Solution	Mass	Filter	Solution	Filter	Solution	Uncertainty
	mg	mg	mg	mg	mg	mg	mg	mg
			TP	M 1				
Particulates	0.0400	4.10	4.14	0.10	0.50	0.0500	0.25	0.25

Report Issue Date

	TPM 1		Standard	Jncertaint	y @ 95%	
Sampled Volume (V _m)	0.59	m ³	uVm	0.001	m ³	
Meter Correction Factor (Yd)	1.04					
Meter Temperature (T _m)	292.08	k	uTm	1.5	k	
Average Differential Pressure (ΔH)	34.67	mmH₂O	u∆H	0.25	mmH_2O	
Barometric Pressure (ρ _b)	750.06	mmHg	uρ _b	3.8	mmHg	
$\Delta H + \rho s (\rho_m)$	100.34	kPa				
Oxygen content (O _{2,m})	20.90	% by volume	$uO_{2,m} = \sigma/\sqrt{n}$	0.00		% by volume
Moisture Content (H ₂ O)	3.59	% by volume	uH ₂ O	0.28		% by volume

Note: In the following calculations, the sensitivity coefficient (C) is estimated using: $C_i = \frac{\partial f}{\partial x_i}$

For each factor, uncertainty is then calculated by $C_i u_i$ where C is the sensitivity coefficient, u is the standard uncertainty and i is the index identifying the contributing factor e.g. $i = uV_{mr}$, uT_m etc.

Where results are required at wet conditions, the following correction factor is used to convert the data from the dry gas meter: TPM 1 :

 $f_{s,wet} = \frac{100}{(100 - H_2 O)} = 1.04$

Uncertainty in correction factor to STP due to measured ΔH uncertainty component (u ΔH), measured stack pressure uncertainty component (up,) & measured temperature of dry gas uncertainty component (uT_{m Dn})

IPM I:						
	$f_s = \frac{273}{760} \times \frac{P_b + \frac{\Delta H}{13.6}}{T_m} \times Y_d = 0.998$					
	Maximum	Minimum	Sensitivity	ufstp		
u∆H	1.00	1.00	0.0000975	0.0000244		
uρ _b	1.00	0.99	0.00133	0.00497		
uTm	1.00	0.99	0.00342	0.00512		
H ₂ O	1.00	0.99	0.0103	0.00286		
$\frac{uf_s}{f_s} = \sqrt{\left(\frac{\sqrt{(u\Delta H_s)}}{(P_n)}\right)^2}$	$\left(\frac{1}{n}\right)^2 + (uP_s)^2 + \left(\frac{1}{n}\right)^2 + \left$	$\frac{uT_m}{T_m/273.15}\Big)^2 + \left(\frac{1}{1}\right)^2$	$\frac{uH_2O}{00/(100-H_2O)}\right)^2 =$	0.00745		

Uncertainty in volume @ STP due to volume correction factor uncertainty component (uV_{std}) & volume uncertainty component (uV_m) TPM 1 :

$V_{std} = V_{std}$	$f_{measured} \times f_s =$	0.586						
	Maximum m ³	Minimum m ³	Sensitivity	Standard Uncertainty (m³)				
Effect of uV _{std}	0.59	0.58	0.59	0.00438				
Effect of $\mathbf{uV}_{\mathbf{m}}$	0.59	0.58	1.00	0.000998				
Combined Standard Uncertainty								
$\frac{uV_{std}}{V_{std}} = 1$	$\left(\frac{uV_{std}}{f_s}\right)^2 +$	$-\left(\frac{uV_m}{V_m}\right)^2 =$	0.00276					

Uncertainty of Oxygen Correction Factor (%):-TPM 1:

$$f_{o_2} = \frac{20.9\% - O_{2, ref}}{20.9\% - O_{2, measured}} = 1.00$$

$$uCorr^*_{o_2} = \frac{20.9\% - O_{2, measured}}{(20.9\% - O_{2, measured})x(20.9\% - O_{2, measured})x} \\ x Uncertainty of O_2 Measurem ent = 1.00$$

$$uf_{o_2} = \frac{uCorr n_{o_2}}{f_{o_2}} x 100 \qquad 0.00\%$$

Aggregate Industries UK Limited Permit No :... : ... : P4694 Variation No Report Ref

: R001

: Aggregate Industries Coventry Coating Plant

- : Emissions Monitoring 2020
 - : 18th November 2020
 - : 7th January 2021

Uncertainty in final measurement @ reference conditions due to mass uncertainty component (uM)

	IFM 1:					
Determinand	Maximum mg/Nm ³	Minimum mg/Nm ³	Sensitivity	uM mg/Nm ³		
Particulates	7.50	6.63	1.71	0.44		
Hydrogen Chloride						
Sulphur Dioxide						
Ammonia						

Uncertainty in final measurement @ reference conditions due to uncertainty component arrising from leak and/or loss (assumed 2% max) in the sample system (uL)

Installation Name

Survey Dates Report Issue Date

Visit Details

	TPM 1 :		
Determinand	uL		
	mg/Nm ³		
Particulates	0.0816		
Hydrogen Chloride			
Sulphur Dioxide			
Ammonia			

Uncertainty in final measurement @ Reference Conditions due to uVstp

		TPM 1 :					
Determinand	Maximum	Minimum	Sensitivity	uVstp			
	mg/Nm ³	mg/Nm ³		mg/Nm ³			
Particulates	7.10	7.03	12.06	0.0332			
Hydrogen Chloride							
Sulphur Dioxide							
Ammonia							

Measurement Uncertainty of Determinand (excluding correction for oxygen)

 $u_{combined} = \sqrt{\sum_{m} (u_{m})^{2} + (u_{L})^{2} + (uV_{stp})^{2}}$

		TPM 1 :					
Determinand	Measurement Uncertainty	Expanded Uncertainty	Measured Concentration	Percent of Measured	Uncertainty as Percentage of		
	mg/Nm ³	mg/Nm ³	mg/Nm ³	Concentration	ELV		
Particulates	0.44	0.89	7.07	12.57	1.78		
Hydrogen Chloride							
Sulphur Dioxide							
Ammonia	l						

 $u_{combined} = \sqrt{\sum (uf_{o_2})^2 + (Uncertainty of Measurement of Determinand)^2}$

	TPM 1 :			
Determinand	Measurement Uncertainty of Determinand	Measurement Uncertainty of Oxygen Corr ⁿ Factor	Overall Measurement Uncertainty inc O ₂ Corr ⁿ factor (Ucombined)	
Particulates	12.57	0.00	12.57	
Hydrogen Chloride				
Sulphur Dioxide				
Ammonia				

Aggregate Industries UK Limited Permit No : ... Variation No Report Ref

0	:	
	: P4694	: R001

: Aggregate Industries Coventry Coating Plant

: Emissions Monitoring 2020

: 18th November 2020

: 7th January 2021

Site: Aggregate Industries UK Ltd Location: Bag Filter Exhaust

Site: Aggregate In Location: Bag Filter Ex	ndustries UK Ltd khaust				$u_{mass} =$	$\sqrt{\sum(u_{filter})}$	$^{2} + (u_{solution})^{2}$	
			Recovered	LAB Method U	Uncert (%) $K = 2$	Standard	Uncertainty	Combined
Determinand	Filter	Solution	Mass	Filter	Solution	Filter	Solution	Uncertainty
	mg	mg	mg	mg	mg	mg	mg	mg
			TP	M 2				
Particulates	0.0400	3.60	3.64	0.10	0.50	0.0500	0.25	0.25

Installation Name

Report Issue Date

Visit Details

Survey Dates

	TPM 2		Standard U	Uncertaint	y @ 95%	
Sampled Volume (V _m)	0.67	m ³	uVm	0.001	m ³	
Meter Correction Factor (Yd)	1.04					
Meter Temperature (T _m)	296.50	k	uTm	1.5	k	
Average Differential Pressure (ΔH)	36.83	mmH ₂ O	u∆H	0.25	mmH ₂ O	
Barometric Pressure (ρ _b)	750.06	mmHg	uρ _b	3.8	mmHg	
$\Delta H + \rho s (\rho_m)$	100.36	kPa				
Oxygen content (O _{2,m})	20.90	% by volume	$uO_{2,m} = \sigma/\sqrt{n}$	0.00		% by volume
Moisture Content (H ₂ O)	3.37	% by volume	uH ₂ O	0.25		% by volume

 $\mathbf{C}_{\mathrm{i}} = \frac{\partial f}{\partial x_i}$ Note: In the following calculations, the sensitivity coefficient (C) is estimated using:

For each factor, uncertainty is then calculated by C_iu_i where C is the sensitivity coefficient, u is the standard uncertainty and i is the index identifying the contributing factor e.g. $i = uV_m$, uT_m etc.

Where results are required at wet conditions, the following correction factor is used to convert the data from the dry gas meter: TPM 2

$$f_{s,wet} = \frac{100}{(100 - H_2 O)} = 1.03$$

Uncertainty in correction factor to STP due to measured AH uncertainty component (uAH), measured stack pressure uncertainty component (up,) & measured temperature of dry gas uncertainty component $(uT_{m Dry})$

TPM 2: $f_s = \frac{273}{760} \times \frac{P_b + \frac{\Delta H}{13.6}}{T_m} \times Y_d =$ 0.981 Sensitivity 0.0000958 0.00130 Minimum ufstp 0.0000240 Maximum u∆H 0.98 0.98 0.98 0.99 0.00489 $u \rho_{\rm b}$ uTm 0.99 0.98 0.00331 0.00496 H_2O 0.98 0.98 0.0102 0.00253 $\sqrt{\left(\frac{\sqrt{(u\Delta H)^2 + (uP_s)^2}}{(P_m/101.3)}\right)^2 + \left(\frac{uT_m}{(T_m/273.15)}\right)^2 + \left(\frac{uH_2O}{100/(100 - H_2O)}\right)}$ $\frac{uf_s}{f_s} =$ 0.00702 $(P_m/101.3)$

Uncertainty in volume @ STP due to volume correction factor uncertainty component (uV_{std}) & volume uncertainty component (uV_m)

	Maximum m ³	Minimum m ³	Sensitivity	Standard Uncertainty (m³)
Effect of uV _{std}	0.66	0.65	0.67	0.00468
Effect of uV_m	0.66	0.65	0.98	0.000981
Combined Stand	ard Uncertainty	/		
μV	$(\mu V)^2$	$\left(\mu V \right)^2$	0.00227	

Uncertainty of Oxygen Correction Factor (%):-TPM 2: $f_{o_2} = \frac{20.9\% - O_{2, ref}}{20.9\% - O_{2, measured}} =$ 1.00 $uCorr^{*}_{o_{2}} = \frac{20.9\% - O_{1.nf}}{(20.9\% - O_{2.nmaxrl})x(20.9\% - O_{2.nmaxrl})} x Uncertainty of O_{2}$ Measurem ent = $uf_{O_{2}} = \frac{uCorrr^{n} O_{2}}{f_{O_{2}}} x 100$ 1.00 0.00 %

Aggregate Industries UK Limited Permit No :... : ... : P4694 Variation No Report Ref

: R001

: Aggregate Industries Coventry Coating Plant

- : Emissions Monitoring 2020
- : 18th November 2020
- : 7th January 2021

Uncertainty in final measurement @ reference conditions due to mass uncertainty component (uM)

	IFM 2:					
Determinand	Maximum mg/Nm ³	Minimum mg/Nm ³	Sensitivity	uM mg/Nm ³		
Particulates	5.95	5.17	1.53	0.39		
Hydrogen Chloride						
Sulphur Dioxide						
Ammonia						

Uncertainty in final measurement @ reference conditions due to uncertainty component arrising from leak and/or loss (assumed 2% max) in the sample system (uL)

Installation Name

Survey Dates Report Issue Date

Visit Details

	TPM 2:		
Determinand	uL		
	mg/Nm ³		
Particulates	0.0642		
Hydrogen Chloride			
Sulphur Dioxide			
Ammonia			

Uncertainty in final measurement @ Reference Conditions due to uVstp

	TPM 2:					
Determinand	Maximum	Minimum	Sensitivity	uVstp		
	mg/Nm ³	mg/Nm ³		mg/Nm ³		
Particulates	5.59	5.54	8.50	0.0278		
Hydrogen Chloride						
Sulphur Dioxide						
Ammonia						

Measurement Uncertainty of Determinand (excluding correction for oxygen)

 $u_{combined} = \sqrt{\sum_{m} (u_{m})^{2} + (u_{L})^{2} + (uV_{stp})^{2}}$

		TPM 2:					
Determinand	Measurement	Expanded	Measured Concentration	Percent of Measured	Uncertainty as Percentage of		
	mg/Nm ³	mg/Nm ³	mg/Nm ³	Concentration	ELV		
Particulates	0.40	0.79	5.56	14.23	1.58		
Hydrogen Chloride							
Sulphur Dioxide							
Ammonia							

 $u_{combined} = \sqrt{\sum (uf_{o_2})^2 + (Uncertainty of Measurement of Determinand)^2}$

	TPM 2:			
Determinand	Measurement Uncertainty of Determinand	Measurement Uncertainty of Oxygen Corr ⁿ Factor	Overall Measurement Uncertainty inc O ₂ Corr ⁿ factor (Ucombined)	
Particulates	14.23	0.00	14.23	
Hydrogen Chloride				
Sulphur Dioxide				
Ammonia				