

EMISSIONS MONITORING SURVEY

(In Association with Advance Environmental Consulting Limited)

Prepared for:

Aggregate Industries UK Limited. Doyle Drive Coventry West Midlands CV6 6NW

Coating Plant Bag Filter Exhaust

Permit Number	:
Variation Number	:
Installation	: Coventry Coating Plant
Visit Details	: Emissions Monitoring 2021
Job Number	: P4941
Report Number	: R001
Report Issue Date	: 6 th September 2021
Survey Dates	: 30 th July 2021

Prepared by:

Environmental Compliance Limited Unit G1 Main Avenue Treforest Industrial Estate Pontypridd CF37 5BF.

Tel: 01443 841760 Fax: 01443 841761

F	Report Issue:	FINAL		
Repo	ort Prepared by:	Report Reviewed & Approved by MCERTS Level Two Technical Endorsements TE1, TE2, TE3 & TE4		
	Gavin Hibbert	Name:	J Litterick	
Name:	Guvin Hibbert	MCERTS No:	MM 03 236	
Date:	20 th August 2021	Date:	6 th September 2021	

This report is not to be used for contractual or engineering purposes unless this approval sheet is completed where indicated by the approver and the report is designated "FINAL".

Aggregate Industries UK Limited Permit No : ... Variation No : ... Report Ref : P4941

: R001

 Installation Name
 : Coventry Coating Plant

 Visit Details
 : Emissions Monitoring 2021

 Survey Dates
 : 30th July 2021

 Report Issue Date
 : 6th September 2021

This report has been prepared by Environmental Compliance Limited (ECL) in association with Advance Environmental Consulting Ltd in their professional capacity as Environmental Consultants. The contents of the report reflect the conditions that prevailed and the information available or supplied at the time of its preparation. The report, and the information contained therein, is provided by ECL solely for use and reliance by the Client in performance of ECLs duties and liabilities under its contract with the Client. Until ECL has received payment in full as detailed in the quotation or contract the contents of this report remain the legal property of ECL. The contents of the report do not, in any way, purport to include any manner of legal advice or opinion.

Any operating information and CEMS data used in this report has been supplied to ECL.

This report should not be reproduced, (except in full) without the written approval of the laboratory.

Should the Client wish to release this report to a Third Party for the party's reliance, Environmental Compliance Ltd may, at its discretion, agree to such release provided that:

- Environmental Compliance Ltd gives written agreement prior to such release and ECL has received payment in full for all works/services undertaken;
- By release of the report to the Third Party, that Third Party does not acquire any rights, contractual or otherwise, whatsoever against Environmental Compliance Ltd and, accordingly, Environmental Compliance Ltd assume no duties, liabilities or obligations to that Third Party;
- Environmental Compliance Ltd accepts no responsibility for any loss or damage incurred by the Client or for any conflict of Environmental Compliance Ltd interests arising out of the Clients' release of this report to the Third Party.

In the event that a report is revised and re-issued, the client shall ensure that any earlier versions of the report, and any copies thereof, are void and such copies should be marked with the words "superseded and revised".

All testing has been undertaken to the main procedural requirements of:

- BS EN 16911-1:2013 & MID
- BS EN 13284-1:2017 & MID

Aggregate IndustriesUK LimitedPermit No: ...Variation No: ...Report Ref: P4941

: R001

Installation Name Visit Details Survey Dates Report Issue Date : Coventry Coating Plant : Emissions Monitoring 2021 : 30th July 2021 : 6th September 2021

TABLE OF CONTENTS

Section	Description	Page Number	
	Document Control Sheet		
PART 1	EXECUTIVE SUMMARY	4	
1	MONITORING OBJECTIVES	4	
1.1	Monitoring Results	5	
1.2	CEMS Data	6	
1.3	Operating Information & Observations	6	
1.4	Monitoring Methods	7	
1.5	Photograph of Monitoring Location	7	
2	MONITORING DEVIATIONS	9	
PART 2	SUPPORTING INFORMATION	10	
3	SAMPLING STAFF DETAILS	10	
4	SAMPLE POINT DESCRIPTIONS	11	
	EQUIPMENT IDs	12	
	TABLES	14	
	VELOCITY TRAVERSE PROFILES	17	
	SAMPLING DATA	19	
	LABORATORY ANALYSIS RESULTS	21	
	UNCERTAINTY CALCULATIONS	23	

Aggregate Industries UK LimitedPermit No: ...Variation No: ...Report Ref: P4941

: R001

Installation Name Visit Details Survey Dates Report Issue Date : Coventry Coating Plant : Emissions Monitoring 2021 : 30th July 2021 : 6th September 2021

PART 1 - EXECUTIVE SUMMARY

1 Monitoring Objectives

Environmental Compliance Ltd (ECL) was commissioned by Advance Environmental Consulting Limited, to undertake an emission monitoring survey for **Aggregate Industries UK Limited** at their **Coventry** facility.

This report presents the findings of the survey on **Coating Plant Bag Filter Exhaust**.

The monitoring at this installation was carried out in accordance with our quotation reference <u>AM/P4514/Q004</u>, for compliance check monitoring of emissions to air.

Aggregate Industri	es UK Limited		Installation Name	: Coventry Coating Plant
Permit No	:		Visit Details	: Emissions Monitoring 2021
Variation No	:		Survey Dates	: 30th July 2021
Report Ref	: P4941	: R001	Report Issue Date	: 6th September 2021

1.1 Monitoring Results

Emission Point Reference	Substance to be Monitored	Emission Limit Value	Periodic Monitoring Result	Units	Uncertainty %	Reference Conditions 273 K, 101.3 kPa	Date of Sampling	Start and End Times	Monitoring Method Reference	Operating Status
	Volumetric Flowrate		7.71329	m³/sec	4	Stack Conditions	ack Conditions			
	Volumetric Flowrate 6.18531 m ³ /sec 5			07:10 - 07:26	BS EN 16911-1:2013 & MID					
	Particulates Run 1	50	5.80	mg/m ³	16		00/07/0004	07:50 - 08:23	BS EN 13284-1:2017 & MID	
Coating Plant Bag	Particulates Run 2	50	2.64	mg/m ³	35			08:44 - 09:17		
Filter Exhaust	Particulates Average		4.22	mg/m³		STP & Wet Gas	30/07/2021			Normai
	Particulates Run 1		0.13	Kg/hr				07:50 - 08:23		
	Particulates Run 2		0.06	Kg/hr				08:44 - 09:17		
	Particulates Average		0.10	Kg/hr						

The volumetric flowrate shown above is that from the initial pitot traverse.

Aggregate Industries	s UK Limited		Installation Name	: Coventry Coating Plant
Permit No	:		Visit Details	: Emissions Monitoring 2021
Variation No	:		Survey Dates	: 30th July 2021
Report Ref	: P4941	: R001	Report Issue Date	: 6th September 2021

1.2 CEMS Data

CEMS data below has been supplied to ECL.

Comparison of Operator CEMS and Periodic Monitoring Results									
Parameter	Date	Time	CEMS Results (Maximum)	CEMS Results (Average)	Periodic Monitoring Result	Units	CEM Model	Current Cal Factor	New Cal Factor
Particulates Run 1		07:50 - 08:23	25.1650	11.8316	5.80	mg/m³			
Particulates Run 2	30/07/2021	08:44 - 09:17	47.8525	26.4197	2.64	mg/m³	PCME 370	2.3552	0.5197
Particulates Average			36.50875	19.1257	4.22	mg/m ³			

*Calibration factor calculation: New Cal Factor = Current Cal Factor x (Monitoring Result / PCME Reading)

1.3 Operating Information & Observations

Operating information below has been supplied by the client. Observations have been made by ECL

Emission Point Reference	Process Type	Total Batch Size	Process Comments	Fuel	Feedstock	Abatement	Load	Appearance of Plume	Appearance of Filter
Coating Plant Bag Filter Exhaust	Batch				Dust, 6mm & 20mm sand	Bag Filter	35 - 40 Tph	Light grey	Moderately Soiled

Environmental	Compliance	Limited
---------------	------------	---------

Aggregate Industrie	s UK Limited		Installation Name	: Coventry Coating Plant
Permit No	:		Visit Details	: Emissions Monitoring 2021
Variation No	:		Survey Dates	: 30th July 2021
Report Ref	: P4941	: R001	Report Issue Date	: 6th September 2021

1.4 Monitoring Methods

Determinand	External Reference Method	ECL Technical Procedure Number
Velocity and Flowrate	BS EN 16911-1:2013 & MID	ECL/ TPD/ 022A
Particulates (Stackmite)	BS EN 13284-1:2017 & MID	ECL / TPD / 027A

1.5 Photograph of Sample Location

Aggregate Industries UK LimitedPermit No: ...Variation No: ...Report Ref<td: P4941</td>

: R001

Installation Name Visit Details Survey Dates Report Issue Date : Coventry Coating Plant : Emissions Monitoring 2021 : 30th July 2021 : 6th September 2021

Aggregate Industries UK LimitedPermit No: ...Variation No: ...Report Ref: P4941

1 : R001

Installation Name Visit Details Survey Dates Report Issue Date : Coventry Coating Plant : Emissions Monitoring 2021 : 30th July 2021 : 6th September 2021

2 Monitoring Deviations

The objective of the survey was to measure the concentrations of pollutants from the processes / locations as detailed in Section 1. This survey meets the requirements of the site's **PPC Permit Number:** ...

There were modifications to the sampling procedures (TPDs) listed in section 1.4, these are as follows:-

Due to high duct gas velocity, in order to maintain isokinetic sampling, it was necessary to use a nozzle with diameter smaller than the recommended minimum of 8mm minimum stated in BS EN 13284-1:2017. Note that there is no absolute minimum nozzle size stated in the standard, as long as the uncertainty of the nozzle area is <5%. So this does not need to be described as a non-conforming test.

There were no non-conforming tests.

The Uncertainty of the reported concentrations for these pollutant results DOES NOT take into account the effect of non-conformities or sample location limitations.

Aggregate IndustriesUK LimitedPermit No: ...Variation No: ...Report Ref: P4941

: R001

Installation Name Visit Details Survey Dates Report Issue Date : Coventry Coating Plant : Emissions Monitoring 2021 : 30th July 2021 : 6th September 2021

PART 2 – SUPPORTING INFORMATION

3

SAMPLING STAFF DETAILS

Site Sampling Team

Names of Site Team	Dates on Site	MCERTS No.	LEVEL	Technical Endorsements
Lee Harper	30/07/2021	MM 17 1423	2	TE1
Alex Fairfield	30/07/2021	MM 20 1589	1	

Report Reviewer

Name	MCERTS No.	LEVEL	Technical Endorsements				
J Litterick	MM 03 236	2	TE1, TE2, TE3, TE4				

Technical Endorsement Key:-

- TE1 Isokinetic Particulates, Temperature & Velocity Profiles, Oxygen.
- TE2 Isokinetic Extractive Pollutants: Metals, Dioxin & Furans, PAHs, PCBs, HCl, HF.
- TE3 Non-Isokinetic Extractive Pollutants: Speciated VOCs, HF, HCl, Cyanide.
- TE4 Continuous Analysers (Combustion Gases): TVOC, CO, NOx, SO2.

Aggregate IndustriesUK LimitedPermit No: ...Variation No: ...Report Ref: P4941

: R001

Installation Name Visit Details Survey Dates Report Issue Date

: Coventry Coating Plant : Emissions Monitoring 2021 : 30th July 2021 : 6th September 2021

4 SAMPLE POINT DESCRIPTIONS

Coating Plant Bag Filter Exhaust

Duct Details											
Shape	Circular										
Depth	0.90m										
Width											
Area	0.64m ²										
Port Recess	0.09m										
Port Size & Type	4″ BSP										
Height of Ports Above Platform	1.40m										
Clearance Behind Ports	0.5m										
Number of Sample Lines Used/Available	2 (2)										
Number of Points Used Per Line	2										
Duct Orientation	Vertical										
Filtration	In Stack										
Access to Sample Location	Ladders										
Location of Nearest Power Supply & Voltage/Amperage	110V/16A in portacabin										

Aggregate Industries UK Limited Permit No : ... :... Variation No Report Ref : ... : P4941

: R001

Installation Name Visit Details Survey Dates Report Issue Date

: Coventry Coating Plant : Emissions Monitoring 2021 : 30th July 2021 : 6th September 2021

EQUIPMENT IDs

Aggregate Industries UK Limited Permit No : ... Variation No : ... Report Ref : P4941

: R001

Installation Name: Coventry Coating PlantVisit Details: Emissions Monitoring 2021Survey Dates: 30th July 2021Report Issue Date: 6th September 2021

PRE SITE EQUIPMENT CHECKLIST/ EQUIPMENT USED

Equipment	Equip. Type	ID No:							
MST console/pump	.,pc	•••							
MST Nozzle set		•••							
MST "S" Type Pitot		•••							
MST Probe	-	•••							
MST Hot Box		•••							
MCT Impingor Arm	E001	•••							
MST impinger Arm		•••							
Barometer		1221							
Site Balance		•••							
Site Check weights		•••							
Site Check weights		•••							
Horiba									
Heated Probe / Filter									
Chiller	E002								
MFC									
Heated Line									
FID									
Heated Line	E002								
Heated Probe / Filter	EUUS								
Testo	E004								
Testo	L004								
	FOOF								
Heated Probe / Filter	E005								
Heated Line									
Stackmite		1280							
"L" Type Pitot		1096							
Digital Manometer	_	1007							
Stack Thermocouple	E006	1248							
Thermocouple Reader		1100							
Nozzle Set		1201							
Workhorse Pumps									
Stack Thermocouple	E007								
Tube Thermocouple	E007								
Meter Thermocouple									
High Vac Gauge									
Dioxin Thermocouple									

Quantity of Ice Required / Used for Survey	NA	Bags (2kg bags)

Aggregate IndustriesUK LimitedPermit No: ...Variation No: ...Report Ref: P4941

: R001

Installation Name Visit Details Survey Dates Report Issue Date

: Coventry Coating Plant : Emissions Monitoring 2021 : 30th July 2021 : 6th September 2021

TABLES

Aggregate Industries UK Limited Permit No : ... Variation No : ... Report Ref : P4941

: R001

Installation Name : Coventry Coating Plant Visit Details : Emissions Monitoring 2021 Survey Dates : 30th July 2021 Report Issue Date : 6th September 2021

Table 1 – Particulates Run 1

Data Recorded from Coventry - Bag Filter Exhaust

Emission Parameter	Units	TPM 1	Blank
Stack Diameter	metres	0.90	
Area of Sample Plane	m ²	0.636	
Moisture Content	%	3.48	
Oxygen Content	%	20.90	
Stack Temperature	°C	79	
Gas Velocity (at Stack Conditions)	m/sec	12.5683	
Gas Velocity (Reference Conditions)	m/sec*	9.5447	
Volumetric Flowrate (Stack Conditions)	m ³ /sec	7.9956	
Volumetric Flowrate (Reference Conditions)	m ³ /sec*	6.0721	
Sample Date		30/07/2021	
Sample Period		07:50 - 08:23	
Sample Volume (at Stack)	m ³	0.74	
Sample Volume (reference Conditions)	m ³ *	0.57	0.57
Isokinetic Sampling Rate	%	107.8	
Sample Reference (ECL ID)	ECL/21/	4371 & 4372	4375 & 4376
Mass of Particulate Matter Collected	mg	3.28	0.54
Concentration of Particulate Matter	mg/m ³ *	5.80	0.96
Emission Rate of Particulate Matter	kg/hr	0.13	
Expanded Uncertainty (% Relative)	%	16	
Emission Limit Value (ELV)	mg/m ³ *	50	
Blank Concentration as Percentage of ELV	%		1.91

*Reference Conditions (273K, 101.3kPa, Wet Gas)

Aggregate Industries UK Limited Permit No : ... Variation No : ... Report Ref : P4941

: R001

Installation Name : Coventry Coating Plant Visit Details : Emissions Monitoring 2021 Survey Dates : 30th July 2021 Report Issue Date : 6th September 2021

Table 2 – Particulates Run 2

Data Recorded from Coventry - Bag Filter Exhaust

Emission Parameter	Units	TPM 2	Blank
Stack Diameter	metres	0.90	
Area of Sample Plane	m ²	0.636	
Moisture Content	%	3.48	
Oxygen Content	%	20.90	
Stack Temperature	°C	80	
Gas Velocity (at Stack Conditions)	m/sec	12.5768	
Gas Velocity (Reference Conditions)	m/sec*	9.5241	
Volumetric Flowrate (Stack Conditions)	m ³ /sec	8.0010	
Volumetric Flowrate (Reference Conditions)	m ³ /sec*	6.0589	
Sample Date		30/07/2021	
Sample Period		08:44 - 09:17	
Sample Volume (at Stack)	m ³	0.73	
Sample Volume (reference Conditions)	m ³ *	0.55	0.55
Isokinetic Sampling Rate	%	105.6	
Sample Reference (ECL ID)	ECL/21/	4373 & 4374	4375 & 4376
Mass of Particulate Matter Collected	mg	1.46	0.54
Concentration of Particulate Matter	mg/m ³ *	2.64	0.98
Emission Rate of Particulate Matter	kg/hr	0.06	
Expanded Uncertainty (% Relative)	%	35	
Emission Limit Value (ELV)	mg/m ³ *	50	
Blank Concentration as Percentage of ELV	%		1.96

*Reference Conditions (273K, 101.3kPa, Wet Gas)

Aggregate Industries UK Limited Permit No : ... :... Variation No Report Ref : ... : P4941

: R001

Installation Name Visit Details Survey Dates Report Issue Date : Coventry Coating Plant : Emissions Monitoring 2021 : 30th July 2021 : 6th September 2021

VELOCITY TRAVERSE PROFILES

Aggregate Industri	es UK Limited		Installation Name	: Coventry Coating Plant
Permit No	:		Visit Details	: Emissions Monitoring 2021
Variation No	:		Survey Dates	: 30th July 2021
Report Ref	: P4941	: R001	Report Issue Date	: 6th September 2021

		Environmental Co	ompliance Limited	d			Traverse D	ata Profoma		Date of N	Aeasurement	30/07/2021
	-					-						
Company	Advance Er	nvironmental	Stack Diameter	Port A (mm)	900	Average Stack Di	ameter (mm)	900	Pitot tube coeffic	ient	0.99	
Site	Aggregate Inc	lustries UK Ltd	Stack Diameter	Port B (mm)	900	Port Length (mm)		90	Pitot Id		1096	Diagram/ Description of Cross Section of Stack/Duct
Location	Cov	entry	Duct Length Po	rt A (mm)		Average Duct Ler	ngth (mm) L		Stack Thermocou	ole ID	1248	
Stack	Bag Filte	er Exhaust	Duct Length Po	rt B (mm)		Duct width (mm)	В		Stack Temp Reade	er ID	1100	
Job No	P4	941	Duct Length Po	rt C (mm)		Barometric Press	ure. (mb)	991	Manometer ID		1007	
Operators	LH	& AF	Duct Length Po	rt D (mm)		Ave Static Press.	(mm H ₂ 0)	-1.43	Barometer ID		1221	
	-		•				•	Ĩ	CA-4- Durant	Deadlines (Deccel	(c)	
									Static Pressure	e Keadings (Fasca	15/	
Pre - Traverse C	Checks Carried O	ut	Time	Pass/ Fail		Smooth Wa	ls 🚽	Port A	Port B	Port C	Port D	
Pre - Traverse F	PITOT Visual Insp	ection	07:10:00	Pass				-14.00	-14.00			
Pre - Traverse F	PITOT Leak Chec	< C	07:12:00	Pass								
												P
	1		Π			r						
Port/	Distance to	Time	Temp	perature Reading	s (°C)	(ΔP) Pitot Readings (Pa) Average Temp. Average (ΔP) Swirl Tes				Swirl Test		
Point	Point (mm)		1	2	3	1	2	3	(° C)	(Pa)	^O From Reference	
A 1	122	07.14.00			(0.0	77.1	76.9	70.0	60.0	77.6	2	
AT	132	07:14:00	60.0	60.0	60.0	//.1	76.0	/0.0	60.0	77.6	2	
A2	/68	0/:16:00	60.0	60.0	60.0	81.3	80.4	82.0	60.0	81.2	1	А
B1	132	07:18:00	60.0	60.0	60.0	80.4	81.4	80.7	60.0	80.8	2	
B2	768	07:20:00	60.0	60.0	60.0	68.7	70.1	69.9	60.0	69.6	2	
				1								
-												
Pl. d.			60.0	60.0	60.0	78.1	77.0	78.6	240.0	309.2	Total	Notes
BIOCKAGE	Cneck @ A1	07:22:00	м	lean	60.0	Me	an	77.9	60.0	81.2	Max	Including expected or actual deviations from procedures / non-conformities
(L-Type	Pitot Only)		Difference <5	5% from Initial ?	0.00	Difference < 5	% from Initial ?	0.43	60.0	69.6	Min	
									60.0	77.3	Average	
Stagnation Cha	d. (Styna Ditat	Onha	Timo	Reading	7				00.0	11.3	Average	
stagnation Che	ck (3-type ritot	Only)	Time	Reauing	-		.				0.000	
Static Pressure	Via Positive Leg	Pa)			-		Average temp (K)		33	3.000	
Static Pressure	Via Negative Leg	(Pa)										
Difference (Pa)	< 10Pa ?						Suitability of Sar	mpling Position		Actual Sta	ck Conditions	
					-		Highest:lowest	flow pressure ratio	o < 9:1?	1	18.1	
Post - Traverse	Chacke Corried	Just	Timo	Dass/ Eat	٦		Maximum d	tion of flow from	ania < 15 ⁰ 2		2	Compliance With Resitional Reminements?
Post - Traverse	Checks Carried C	Jui	Time	rass/rall	-	Maximum deviation of flow from axis			$axis < 15^{\circ}$		2	Compliance with Positional Kequirements?
rost - Traverse	visual Inspection		07:24:00	Pass	-	X-sectional area for stacks = πr^2				0.64	m	· · · · · · · · · · · · · · · · · · ·
Post - Traverse	PITOT Leak Chee	:k	07:26:00	Pass		X-sectional area for ducts = L x B					m ⁴	Height of sample ports from Platform 1.4m
							Suitability of Po	sition for Samplin	g		OK	Number of sample ports 2
												Width of platform (port back to handrail) 0.5m
		Stack Moisture		3.48	%	Gas Velocity (as Me	asured) Adjusted fo	or Smooth Walls		12.12453	m/sec	
		Measured Oxyg	en	20.9	%	Gas Velocity (Refer	ence Conditions) Ad	djusted for Smooth V	Walls	9.72269	m/sec*	Nearest downstream disturbance Exit 3.0m
		Measured Carbo	on Dioxide	0.1	%	Volumetric Flowrat	e (as Measured) Ad	justed for Smooth W	/alls	7.71329	m ³ /sec	Nearest upstream disturbance Fan 5.0m
		Drv Gas Molecu	ılar Weight	28.85200	g/g mole	Volumetric Flowrat	lumetric Flowrate (Bef Cond) Adjusted for Smooth Walls				m ³ /sec*	Disturbances are classed as bends, fans or diameter variations

*Reference Conditions: 273K, 101.3kPa, Wet Gas

NOTE: Velocity / volume flowrate calculations exclude contributions from the measurement point(s) where swirl > 15°

Aggregate IndustriesUK LimitedPermit No: ...Variation No: ...Report Ref: P4941

: R001

Installation Name Visit Details Survey Dates Report Issue Date

: Coventry Coating Plant : Emissions Monitoring 2021 : 30th July 2021 : 6th September 2021

SAMPLING DATA

Aggregate IndustriesUK LimitedPermit No: ...Variation No: ...Report Ref: P4941

: R001

Installation Name Visit Details Survey Dates Report Issue Date

: Coventry Coating Plant : Emissions Monitoring 2021 : 30th July 2021 : 6th September 2021

Environm		PARTI	CULATE DATA	SAMPLING PRO	FORMA	Date of M	leasurement	30/07/2021					
	ECI/TRD/		272	Time taken te	change Ports?	1	Start Time	07:50	End Time	08:22	D.	ration (minc)	22
	ECUTED/		2/d	Time taken to	change rons:		Start Time	07:50	End Time	06:23	DI	ration (mins)	32
Client		Advance E	invironmental	Stack Profile		Circular	Pitot ID		1096	Stack Thermocouple ID	1248	Impingers	Unweighed Silica
Site		Aggregate In	dustries UK Ltd	Stack Area (m ²)		0.64	0.64 Manometer ID		1007	Stack Temp Reader ID	1100	SOL/	g
Location		Co	ventry	Barometric Pre	ssure (mb)	991	Baromet	er ID	1221	Meter Thermocouple ID	1286	Start Weight (g)	0.00
Stack ID		Bag Filt	ter Exhaust	Stat Pres. (mm	H ² 0) (Pa/9.807)	-1.428	DGM	Yd	0.9856	Meter Temp Reader ID	1287	End Weight (g)	15.85
Test No.		Т	PM 1	Pitot coefficien	t	0.99	Nozzle	e ID	1201	Dry Gas Meter ID	1284	Total weight (g)	15.85
Job No		P	4941	Balance ID		n/a	Nozzle Siz	re (mm)	6.02	Timer ID	1288	Kanda a sa	
ECL Site Staft	f	LH	1 & AF	Console ID		1283	Filter	ID	224670-2699	Rotameter ID	1285	If moisture was	not measured and
	-	-										gas was dried beto	ore entering the gas
	Sample Volume		Note that once	the sample has s	tarted, no further		Total		Volume (litres)	@ STP Dry		meter, impinger	weights must be
Start Volume	109052.0		SAMPLE TRAIN	leak checks are	allowed, neither			Expected S	ample Volume	506.00		included to proc	luce the moisture
Final Volume	109662.0		when changing	ports (even if dis	connections are			Actual Sa	mple Volume	545.42		concentration us	ed in the isokinetic
Total Volume	610.0		required) nor at	the end of the t	est.		610.0	Isokineti	c Percentage	107.79		calculations.	t the gas was not
								-				dried before it en	tered the gas meter
Leak Check	Pre Sample		* During sample	e train leak	Maximum	Measured O ₂	20.90	M	oisture	3.48		then impinger v	veights <u>MUST</u> be
Measured Leak Rate* I/min	0		check, set the sa	ample flowrate	allowed leak rate is 2% of the	Measured CO ₂ %	0.10	R	ef O ₂	n/a		included to produ	ice a nominal 0.1%
Set Sampling Rate* (l/min)	25		above the maxir	num EXPECTED	set rate	Measured CO ppm	0.1	Dry Gas Me	olecular Weight	28.85		moistu	re value.
Time Of Leak Check	07:48		sampling flowra	ite.	Sr	nooth Wal	lls -				-	DI Water SOL/	4335
Leak % of set rate	0.0							1				Acetone SOL/	4249
TPD/27A is carried out with an unheated sampling system only.													
Traverse Point		A1	A1	A2	A2	B1	B1	B2	B2	Total	1	Original Flow	vrate Settings
Time Interval (mins)		4	4	4	4	4	4	4	4			Tm	40
Time/Point (mins)		0 - 4	4 - 8	8 - 12	12 - 16	16 - 20	20 - 24	24 - 28	28 - 32			Ts	60
ΔP (Pa)		79.80	81.40	81.60	82.40	68.40	70.50	82.40	83.00	78.7		% moisture	0.1
Velocity at Stack (m/s)		12.72	12.84	12.86	12.94	11.79	11.97	12.94	12.99			Pitot Quality	Control Checks
Sample Rate (l/min) 101.3 mbar, Tm,	, Dry Gas	17.2	17.3	17.4	17.5	15.9	16.2	17.5	17.6	17.1		Visual Inspection	
Meter (Tm)		21	21	21	22	22	22	22	22	21.6		Time	07:24
Stack Temp (Ts)		78	78	78	79	79	79	79	79	78.6		Pass ? (Y/N)	Ŷ
Traverse Point										lotal		PRE-Sample PI	OI Leak Check
Time Interval (mins)												Time D D D D D D	07:26
Time/Point (mins)												Pass f (Y/N)	Y
Ar (rd)												Beat Consula Dian	lana Charle (Ltora)
Sample Pate (/min) 101.3 mbar. Tm	Dry Car											Fost-sample bloc	09.25
Motor (Tm)	, bry our											Pooding (Po)	77.9
Stack Temp (Ts)												Pass (< 5%) ?	-2.5
													210
Traverse Point										Total		POST-Sample PITC	T Visual Inspection
Time Interval (mins)												Time	08:27
Time/Point (mins)												Pass ? (Y/N)	Y
AP (Pa)													
Velocity at Stack (m/s)												POST-Sample P	ITOT Leak Check
Sample Rate (l/min) 101.3 mbar, Tm, Dry Gas											Time	08:29	
Meter (Tm)	Meter (Tm)											Pass ? (Y/N)	Y
Stack Temp (Ts)													

Environmental Compliance Limited				PARTICULATE DATA SAMPLING PROFORMA Date of Measurement					30/07/2021				
	ECL/TPD/		27a	Time taken to	change Ports?	1	Start Time	08:44	End Time	09:17	Du	ration (mins)	32
<u> </u>													
Client		Advance I	Environmental	Stack Profile		Circular	Pitot	Pitot ID		Stack Thermocouple ID	1248	Impingers	Unweighed Silica
Site		Aggregate In	ndustries UK Ltd	Stack Area (m ²)		0.64	Manome	ter ID	1007	Stack Temp Reader ID	1100	SOL/	
Location		Co	oventry	Barometric Pre	ssure (mb)	991	Baromet	er ID	1221	Meter Thermocouple ID	1286	Start Weight (g)	0.00
Stack ID		Bag Fil	ter Exhaust	Stat Pres. (mm	H ² 0) (Pa/9.807)	-1.428	DGM	Yd	0.9856	Meter Temp Reader ID	1287	End Weight (g)	15.50
Test No.		Т	PM 2	Pitot coefficien	t	0.99	Nozzle	e ID	1201	Dry Gas Meter ID	1284	Total weight (g)	15.50
Job No		P	4941	Balance ID		n/a	Nozzle Siz	re (mm)	6.02	Timer ID	1288	If moisture was	not measured and
ECL Site Stat	1	L	I & AF	Console ID		1283	Filter	ID	224687-2699	Rotameter ID	1285	gas was dried befo	are entering the gas
									N 1 45	A (78 D		meter impinger	weights must he
Sec. 199.1	Sample Volume		Note that once	the sample has s	tarted, no turther		lotal	Forward and F	Volume (litres	@ SIP Dry		included to proc	luce the moisture
Start Volume	109828.0		SAMPLE IRAIN	leak checks are	allowed, neither			Expected S	ampie volume	504.90		concentration us	ed in the isokinetic
rinal volume	110427.0		when changing	ports (even il dis	connections are		200 0	Actual Sa	npie volume	333.10		calculations I	f the are was not
Total Volume	599.0		required) nor at	the end of the t	est.		599.0	Isokineti	c rercentage	105.58	1	dried before it en	tered the gas meter
Leak Check	Pre Sample	1			Maximum	Measured O ₂	20.90	M	pisture	3.48	1	then impinger v	veights MUST be
Measured Leak Rate* I/min	0		- During sampi	e train ieak	allowed leak	Measured CO., %	0.10	R	ef O ₂	n/a		included to produ	ce a nominal 0.1%
Set Sampling Rate* (I/min)	25		above the maxir	num EXPECTED	rate is 2% of the	Measured CO nom	0.1	DevCarM	alocular Woight	28.85	DI Water SOL		re value.
Time Of Leak Check	09:40		sampling flowra	ite.	C.			Diy Gas Mu	Secular Weight	20105			4335
Leak % of set rate	0.40				SI	nooth wa	is -					Acetone SOL	4249
	0.0				TPD/27A is	carried out y	vith an unho	atod sami	alina eveton	only			
Traverse Point		A1	A1	A2	A2	B1	B1	B2	B2	Total	1	Original Flow	vrate Settings
Time Interval (mins)		4	4	4	4	4	4	4	4			Tm	40
Time/Point (mins)		0-4	4 - 8	8 - 12	12 - 16	16 - 20	20 - 24	24 - 28	28 - 32			Ts	60
AP (Pa)		77.50	80.10	82.20	84.10	70.70	72.40	78.90	82.40	78.5		% moisture	0.1
Velocity at Stack (m/s)		12.55	12.76	12.94	13.09	12.00	12.15	12.68	12.94			Pitot Quality	Control Checks
Sample Rate (I/min) 101.3 mbar, Tm	, Dry Gas	17.0	17.3	17.5	17.7	16.2	16.4	17.1	17.5	17.1		PRE-Sample PITO	T Visual Inspection
Meter (Tm)		23	23	23	23	23	23	23	23	23.0		Time	08:27
Stack Temp (Ts)		79	79	80	80	80	80	80	79	79.6		Pass ? (Y/N)	Ŷ
Traverse Point										Total		PRE-Sample PI	TOT Leak Check
Time Interval (mins)												Time	08:29
Time/Point (mins)												Pass ? (Y/N)	Y
ΔP (Pa)													
Velocity at Stack (m/s)												Post-Sample Bloc	kage Check (L-type)
Sample Rate (I/min) 101.3 mbar, Tm	, Dry Gas											Time	09:19
Meter (Im)												Reading (Pa)	78.1
Stack Temp (Ts)											l .	Pass (< 5%) f	0.8
Traverse Point										Total	1	POST-Sample PITC	T Visual Inspection
Time Interval (mins)												Time	09:21
Time/Point (mins)												Pass ? (Y/N)	Y
AP (Pa)	Pa)												
Velocity at Stack (m/s)	locity at Stack (m/s)											POST-Sample P	ITOT Leak Check
Sample Rate (l/min) 101.3 mbar, Tm	, Dry Gas											Time	09:23
Meter (Tm)												Pass ? (Y/N)	Ŷ
Stack Temp (Ts)													

Aggregate Industries UK Limited Permit No :... Variation No :... Report Ref : P4941

: R001

Installation Name Visit Details Survey Dates Report Issue Date

: Coventry Coating Plant : Emissions Monitoring 2021 : 30th July 2021 : 6th September 2021

LABORATORY ANALYSIS RESULTS

Laboratory analysis was subcontracted to RPS laboratories, a UKAS Accredited Testing Laboratory, Number 0605.

Aggregate Industries	UK Limited		Installation Name	: Coventry Coating Plant
Permit No	:		Visit Details	: Emissions Monitoring 2021
Variation No	:		Survey Dates	: 30th July 2021
Report Ref	: P4941	: R001	Report Issue Date	: 6th September 2021

			Custon	ner Sar	nple No	ECL/21/4371	ECL/21/4372	ECL/21/4373	ECL/21/4374	ECL/21/4375	ECL/21/4376	ECL/21/4377	ECL/21/4378
	F	RPS Sa	mple No	53526	53527	53528	53529	53530	53531	53532	53533		
Sample Matrix						FILTER	SOLUTION	FILTER	SOLUTION	FILTER	SOLUTION	FILTER	SOLUTION
Sampling Date					30/07/2021	30/07/2021	30/07/2021	30/07/2021	30/07/2021	30/07/2021	30/07/2021	30/07/2021	
Determinand	CAS No	Codes	SOP	RL	Units								
particulates		UM	D9	0.04	mg	1.38		0.86		< 0.04		< 0.04	
particulates		UM	D9	0.5	mg		1.9		0.6		< 0.5		< 0.5

Aggregate Industries UK Limited Permit No : ... :... : ... : P4941 Variation No Report Ref

: R001

Installation Name Visit Details Survey Dates Report Issue Date : Coventry Coating Plant : Emissions Monitoring 2021 : 30th July 2021 : 6th September 2021

UNCERTAINTY CALCULATIONS

Aggregate Industries UK Limited Permit No :... : ... : P4941 Variation No Report Ref

: R001

: Coventry Coating Plant : Emissions Monitoring 2021 : 30th July 2021 : 6th September 2021

Stack Reference

Bag Filter Exhaust Measurement Uncertainty Calculations - Velocity at Stack Conditions

Installation Name

Report Issue Date

Visit Details

Survey Dates

Contribution From	Standard u/c (Pa)	
Pitot Calibration Uncertainty Contribution	0.39	А
Manometer Calibration Uncertainty Contribution	0.3865	В
Variation in Actual Pitot reading at sample points	0.75	С
Combined u/c (Pa) =	Combined u/c (Pa)	
SQRT $(A/\sqrt{3})^2 + (B/\sqrt{3})^2 + (C/\sqrt{3})^2$	0.54	
Expanded Uncertainty of Flow Measurements Pa	1.07	
	Standard u/c (K)	
Temperature Calibration (K)	1.67	D
Variation in Actual Temp reading at sample points	0.00	Е
Combined u/c of Temp (K)	Combined u/c (K)	
SQRT $((D/\sqrt{3}^2) + (E/\sqrt{3})^2)$	0.96	
Expanded Uncertainty of Temp Measurements (K)	1.92	
Measured Average Velocity (m/s) at Stack Conds	12.19	
Maximum Average Velocity (m/s) at Stack Conds	12.31	
Standard Uncertainty Velocity at Stack Conditions (%)	0.98	
Expanded Uncertainty Velocity (at Stack Conditions)	1.96 (%)

Measurement Uncertainty Calculations - Flowrate at Stack Conditions

Contribution From	Standard u/c (m ²)	
Area (m2)	0.00636	
Measured Average Flowrate (m ³ /s) at Stack Conds	7.75	
Maximum Average Flowrate (m ³ /s) at Stack Conds	7.91	
Standard Uncertainty Flowrate (m ³ /s) at Stack Conditions (%)	1.99	
Expanded Uncertainty Flowrate (m ³ /s) at Stack Conditions	3.98 (%)

Measurement Uncertainty Calculations - Flowrate at STP & Wet Gas

Contribution From	Standard u/c (%)	
Temperature Calibration (K)	0.5	
Barometer Calibration	0.5	
Measured Average Flowrate (m ³ /s) at STP Wet	6.22	
Maximum Average Flowrate (m ³ /s) at STP Wet	6.37	
Standard Uncertainty Flowrate (m ³ /s) at STP Wet	2.41	
Expanded Uncertainty Flowrate (m ³ /s) at STP Wet	4.82 (%)	

Aggregate Industries	UK Limited		Installation Name	: Coventry Coating Plant
Permit No	:		Visit Details	: Emissions Monitoring 2021
Variation No	:		Survey Dates	: 30th July 2021
Report Ref	: P4941	: R001	Report Issue Date	: 6th September 2021

Site: Advance Environmental, Aggregate Industries UK Ltd Location: Coventry , Stack ID: Bag Filter Exhaust

 $u_{mass} = \sqrt{\sum (u_{filter})^2 + (u_{solution})^2}$

			Recovered	LAB Method	Uncert (%) K=2	Standar	d Uncertainty	Combined
De	eterminand Filter	Solution	Mass	Filter	Solution	Filter	Solution	Uncertainty
	mg	mg	mg	mg	mg	mg	mg	mg
			TP	PM 1				
Particulates	1.38	1.90	3.28	0.10	0.50	0.0500	0.25	0.25
		TPM 1			Standard	Uncertainty	@ 95%	
	Sampled Volume (V	′ m) 0.61		m ³	uVm	0.001	m ³	
	Meter Correction Factor ()	′ d) 0.99						
	Meter Temperature (1	m) 294.78		k	uTm	1.5	k	
	Static Pressure of Stack Psta	atic -1.428E+00		mmH ₂ O	uP _{static}	0.25	mmH ₂ O	
	Absolute Stack Pressure	ρ _s 743.31		mmHg	uρ _s	0.8	mmHg	
	Barometric Pressure	ρ _b 743.49		mmHg	uρ _b	3.8	mmHg	
Ave	rage Differential Pressure (ΔP) +	ρs 100.17		mmH ₂ O	u∆H	0.25	mmH ₂ O	
	Oxygen content (O2	,m) 20.90		% by volume	$uO_{2,m} = \sigma/\sqrt{n}$	0.00	% by volume	
	Moisture Content (H ₂	O) 3.48		% by volume	uH ₂ O	0.34	% by volume	

Note: In the following calculations, the sensitivity coefficient (C) is estimated using: $C_i = \frac{\partial f}{\partial x_i}$

For each factor, uncertainty is then calculated by $C_i u_i$ where C is the sensitivity coefficient, u is the standard uncertainty and i is the index identifying the contributing factor e.g. $i = uV_{nv} uT_m$ etc.

Where results are required at wet conditions, the following correction factor is used to convert the data from the dry gas meter:

$$f_{s,wet} = \frac{100}{(100 - H_2 O)} = 1.04$$

Uncertainty in correction factor to STP due to measured barometric pressure uncertainty component (upb), measured static pressure uncertainty component (uPstatic) & measured temperature of dry gas uncertainty component (uT_m)

$f_s = \frac{273}{760} \times \frac{P_b + \frac{\Delta H}{13.6}}{T_m} \times Y_d = 0.934$				Vs	$_{td} = V_{measu}$	$ured \times f_s =$	0.5699		
u∆H	Maximum 0.49	Minimum 0.49	Sensitivity 0.0000475	ufstp 0.0000119		Maximum m ³	Minimum m ³	Sensitivity	Standard Uncertainty (m ³)
uρ _b	0.49	0.48	0.000646	0.00242	Effect of uVstd	0.57	0.57	0.61	0.00181
uTm	0.49	0.48	0.000854	0.00128	Effect of uVm	0.57	0.57	0.93	0.000934
H ₂ O	0.49	0.48	0.00503	0.00171					
$\frac{uf_s}{f_s} = \sqrt{\left(\frac{\sqrt{(u\Delta H)}}{(P_m)}\right)^2}$	$\left(\frac{1}{(101.3)}\right)^2 + \left(\frac{1}{(101.3)}\right)^2 $	$\frac{uT_m}{T_m/273.15}\right)^2 + \left(\frac{1}{10}\right)^2$	$\frac{uH_2O}{00/(100-H_2O)}\bigg)^2 =$	0.00297	$\frac{uV_{std}}{V_{std}} = .$	$\sqrt{\left(\frac{uV_{std}}{f_s}\right)^2}$ +	$-\left(\frac{uV_m}{V_m}\right)^2 =$	0.00141	

Uncertainty of correction factor to reference oxygen due to measured oxygen Uncertainty in final measurement @ reference conditions due to mass uncertainty uncertainty component (uf_{O2}) & Uncertainty in final measurement @ reference component (uM), oxygen correction uncertainty component (uf_{Oxy}) and STP volume conditions due to uncertainty component arrising from leak and/or loss (assumed 2% uncertainty component (uVstp) max) in the sample system (uL)

$f_{o_2} = \frac{20.9\% - O_{2, ref}}{20.9\% - O_{2, measured}} = 1.00$		$Conc = \frac{1}{V_{r}}$	$\frac{M_{\text{Recovered}}}{M_{\text{Recovered}}} = $	5.76	
$uCorr^*_{o_2} = \frac{20.9\% - O_{2, nf}}{(20.9\% - O_{2, manurel}) x(20.9\% - O_{2, manurel})} x Uncertainty of O_2 Measurem ent = 1.00$		Maximum mg/Nm ³	Minimum mg/Nm ³	Sensitivity	u mg/Nm ³
	uМ	6.20	5.31	1.75	0.45
$uf_{a_2} = \frac{uCorr^{"}_{a_2}}{f_{a_2}} \times 100 = 0.00$	uV _{stp}	5.77	5.74	10.10	0.0142

Measurement Uncertainty of Determinand (excluding correction for oxygen)

Measurement Uncertainty of Determinand (including correction for oxygen)

 $u_{combined} = \sqrt{\sum (uf_{o_2})^2 + (Uncertainty of Measurement of Determinand)^2}$

Determinand	Measurement Uncertainty of Determinand	Measurement Uncertainty of Oxygen Corr ⁿ Factor	Overall Measurement Uncertainty inc O ₂ Corr [®] factor (Ucombined)%
Particulates	15.6	0.0	15.6

Aggregate Industries	UK Limited		Installation Name	: Coventry Coating Plant
Permit No	:		Visit Details	: Emissions Monitoring 2021
Variation No	:		Survey Dates	: 30th July 2021
Report Ref	: P4941	: R001	Report Issue Date	: 6th September 2021

Site: Advance Environmental, Aggregate Industries UK Ltd Location: Coventry , Stack ID: Bag Filter Exhaust

 $u_{mass} = \sqrt{\sum (u_{filter})^2 + (u_{solution})^2}$

			Recovered	LAB Method	Uncert (%) K=2	Standar	d Uncertainty	Combined
Determinand	Filter	Solution	Mass	Filter	Solution	Filter	Solution	Uncertainty
	mg	mg	mg	mg	mg	mg	mg	mg
			TP	PM 2				
Particulates	0.86	0.60	1.46	0.10	0.50	0.0500	0.25	0.25
		TPM 2			Standard U	Uncertainty	@ 95%	
Sar	npled Volume (V _m)	0.60		m ³	uVm	0.001	m ³	
Meter Co	rrection Factor (Yd)	0.99						
Mete	er Temperature (T _m)	296.15		k	uTm	1.5	k	
Static Pres	sure of Stack P _{static}	-1.428E+00		mmH ₂ O	uP _{static}	0.25	mmH ₂ O	
Absolu	te Stack Pressure ρ _s	743.31		mmHg	uρ _s	0.8	mmHg	
Bare	ometric Pressure pb	743.49		mmHg	uρ _b	3.8	mmHg	
Average Differential	Pressure (ΔP) + ρs	100.17		mmH_2O	uΔH	0.25	mmH ₂ O	
Ox	ygen content (O _{2,m})	20.90		% by volume	$uO_{2m} = \sigma/\sqrt{n}$	0.00	% by volume	
Mois	ture Content (H ₂ O)	3.48		% by volume	uH ₂ O	0.35	% by volume	
					<i>∂</i> f			
Note: In the following calcul	ations, the sensitivity	coefficient (C) is	estimated using:	($C_i = \frac{c_j}{2}$			
					CX_i			

For each factor, uncertainty is then calculated by C_iu_i where C is the sensitivity coefficient, u is the standard uncertainty and i is the index identifying the contributing factor e.g. $i = uV_{nv} uT_m$ etc.

Where results are required at wet conditions, the following correction factor is used to convert the data from the dry gas meter:

c	100		
$J_{s,wet} =$	$\frac{1}{(100 - H_2O)}$	=	1.04

Uncertainty in correction factor to STP due to measured barometric pressure uncertainty Uncertainty in volume @ STP due to volume correction factor uncertainty component (upb), measured static pressure uncertainty component (uPstatic) & measured component (uVstd) & volume uncertainty component (uVm) emperature of dry gas uncertainty component (uT_m) $f_s = \frac{273}{760} \times \frac{\frac{P_b + \frac{\Delta H}{13.6}}{T_m}}{T_m} \times Y_d =$ 0.930 $V_{std} = V_{measured} \times f_s =$ 0.5571 Minimum Sensitivity ufstp Maximum Minimum Standard Maximum Sensitivity 0.48 0.48 0.0000474 0.0000118 m^3 m³ Uncertainty (m³) u∆H $u
ho_b$ 0.49 0.48 0.000644 0.000850 0.00242 Effect of uVstd 0.56 0.56 0.60 0.00177 0.48 0.00128 0.49 Effect of uVm 0.56 uTm 0.56 0.93 0.000930 H₂O 0.49 0.48 0.00501 0.00173 $+\left(\frac{uT_m}{(T_m/273.15)}\right)^2 + \left(\frac{uH_2O}{100/(100-H_2O)}\right)$ $\frac{uV_{std}}{V_{std}} = \sqrt{\left(\frac{uV_{std}}{f_s}\right)}$ $\left(\sqrt{(u\Delta H)^2 + (uP_s)^2}\right)$ $\left(\frac{uV_m}{V_m}\right)$ 0.00296 0.00137 $(P_m/101.3)$ f_s

Uncertainty of correction factor to reference oxygen due to measured oxygen uncertainty component (uf_{O2}) & Uncertainty in final measurement @ reference conditions due to uncertainty component arrising from leak and/or loss (assumed 2% max) in the sample system (uL)

$f_{o_2} = \frac{20.9\% - O_{2, ref}}{20.9\% - O_{2, measured}} = 1.00$		$Conc = \frac{1}{V_n}$	$\frac{M_{\text{Recovered}}}{M_{\text{Recovered}}} = $	2.62	
$uCorr^{*}_{v_{1}} = \frac{20.9\% - O_{2,ref}}{(20.9\% - O_{2,maxeel})x(20.9\% - O_{2,maxeel})} xUncertainty of O_{2} Measurement = 1.00$		Maximum mg/Nm ³	Minimum mg/Nm ³	Sensitivity	u mg/Nm ³
$uf_{o_2} = \frac{uCorr^{n}_{o_2}}{f_{o_2}} \times 100 = 0.00$	UV da	2.63	2.16	4.70	0.46
	a v sip				

Measurement Uncertainty of Determinand (excluding correction for oxygen)

$$u_{combined} = \sqrt{\sum (u_M)^2 + (u_L)^2 + (uV_{stp})^2}$$

Combined	Expanded	Measured	Percent of	Uncertainty as
Uncertainty	Uncertainty	Concentration	Measured	Percent of ELV
mg/Nm ³	mg/Nm ³	mg/Nm ³	Concentration	
0.46	0.92	2.62	34.9%	1.8%

Measurement Uncertainty of Determinand (including correction for oxygen)

$$u_{combined} = \sqrt{\sum (uf_{o_2})^2 + (Uncertainty of Measurement of Determinand)}$$

Determinand	Measurement Uncertainty of Determinand	Measurement Uncertainty of Oxygen Corr ⁿ Factor	Overall Measurement Uncertainty inc O ₂ Corr [®] factor (<i>Ucombined</i>)%
Particulates	34.9	0.0	34.9