WOLFSON LABORATORIES UNIVERSITY OF EXETER HIGHER HOOPERN LANE EXETER, DEVON EX4 4SG TEL 01392 430088 FAX 01392 430080

PARTICULATE EMISSION MONITORING AGGREGATE INDUSTRIES UK LIMITED EXPRESS ASPHALT COVENTRY WARWICKSHIRE

Report on Particulate Emission Monitoring to Determine the Levels of Particulate Emission from the Parker Asphalt Plant at Aggregate Industries UK Limited Express Asphalt

Coventry

Warwickshire

Report Submitted to:

Aggregate Industries UK Limited

Express Asphalt

Doyle Drive

Coventry

Warwickshire

CV6 6NW

Report Prepared By:

K Gough Company Principal A Yelland Associate

Date:

15 August 2007

CONTENTS

SUMMARY INFORMATION

- 1. INTRODUCTION
- 2. BACKGROUND INFORMATION
- 3. MONITORING CONTRACTOR

4. MONITORING PROTOCOL

- 4.1 Test method and references
- 4.2 Sampling Procedure
- 4.3 Sampling equipment
- 4.4 Preparation for sampling
 - 4.4.1 Filter Preparation
 - 4.4.2 Sampling Location
- 4.5 Sample collection
- 4.6 Analysis of samples
- 4.7 Calculation of results
- 4.8 Sampling Results
- 4.9 Comments

5. SAMPLING RECORDS

SUMMARY INFORMATION

DETERMINED	UNITS	RESULTS	LIMIT
Particulate Concentration (STP)	mg/m ³	16.8	50
Mass Emission (STP)	Kg/hr	0.41	-
Stack Temperature	°C	90	
Gas Velocity	ms ⁻¹	14.40	
Stack Volume Flow Rate (Actual)	m ³ /hr	32975	
Stack Volume Flow Rate (STP)	m ³ /hr	24401	

All results are reported at reference conditions of 273K, 101.3kPa, wet gas.

1. INTRODUCTION

On 23 July 2007, particulate emission testing was undertaken by Advance Environmental, on the Parker asphalt plant at Aggregate Industries UK Limited, Express Asphalt, Coventry.

The purpose of the emission testing was to ensure compliance with the requirements of the permit issued by Coventry City Council under The Pollution Prevention and Control (PPC) regime introduced by the PPC Act 1999.

2. BACKGROUND INFORMATION

The Pollution Prevention and Control Act came into force in December 1999, superseding Part 1 of the Environmental Protection Act, 1990. The Act introduced a new regime of integrated pollution prevention and control (IPPC) for those industrial activities regulated by the Environment Agency and Local Authority Pollution Prevention and Control (LAPPC) for those regulated by Local Authorities. Roadstone coating, mineral drying and cooling and other quarry processes were scheduled for LAPPC under Section 3.5 of Part B of the Pollution Prevention and Control (England and Wales Regulations) 2000, and were brought under the revised regime in March 2003.

To continue operations, all sites operating scheduled processes must obtain a permit from their Local Authority and comply with the conditions contain therein. The conditions will include a requirement to monitor emissions to air both periodically and continuously in accordance with relevant clauses of following process guidance note:-

PG3/15a(04) Secretary of State's Guidance – Roadstone Coating Processes

3. MONITORING CONTRACTOR

The emissions test was co-ordinated by Mr K Gough, Company Principal, Advance Environmental. Mr Gough has 18 years experience of undertaking particulate emission testing on plant used in the quarrying and allied industries.

4. MONITORING PROTOCOL

4.1 Test method and references

Isokinetic sampling of the contained emission sources was undertaken using the APEX Instruments Inc Method Five isokinetic sampling apparatus in accordance with the main procedural requirements of given within the following British Standards and Technical Guidance Notes:-

- BS ISO 9096:2003 Stationary source emissions. Manual determination of mass concentration of particulate matter.
- Environment Agency Technical Guidance Document (Monitoring) M1 Sampling requirements for monitoring stack emissions to air from industrial installations; and
- Environment Agency Technical Guidance Document (Monitoring) M2 Monitoring of Stack Emissions to Air.

4.2 Sampling Procedure

The work carried out was, as far as was reasonably practical, in accordance with BS ISO 9096.

Isokinetic flow means that sample gases laden with particulates are drawn off at the same velocity as the free stream velocity in the flue. Isokinetic sampling thus avoids possible inertial effects of particulates approaching the vicinity of the inlet nozzle which may result in significant error.

The Apex Instruments test equipment used, is designed to meet the sampling requirements of US EPA Method 5 and with a modified nozzle design, meets the sampling requirements of BS ISO 9096.

The principle of BS ISO 9096 is to draw a known volume of dust laden gas isokinetically through a filter. The weight gain on the filter, after sampling, divided by the gas sample volume equates to the particulate concentration, which in turn can be used to calculate a mass emission.

4.3 Sampling equipment

The test equipment is inspected prior to use and the calibration status observed. This includes:-

- *Pitot Tube* All pitot tubes are checked for damage, alignment and that there are no blockages;
- *Manometer* Oil levels, connectors and orientation level are checked;
- Thermocouple Temperature is measured using k type thermocouples. Each thermocouple is inspected for calibration and damage. Digital temperature meters are used in conjunction with k type thermocouples which are also checked for calibration dates;
- *Gas meter* The calibration of the gas meter is checked before and after sampling using a critical orifice.
- Nozzles All nozzles used have been constructed in accordance with BS ISO 9096. Each nozzle is checked for damaged and measured using a vernier caliper on at least 3 planes. Non conforming nozzles will be rejected.
- Balance A Mettler Toledo balance is used to weigh filters. It is calibrated yearly by the manufacturer and checked daily by in-house weights.
- *Filters* Pall quartz membrane filters with a collection efficieny of >99.5% at 0.3microns.

4.4 **Preparation for sampling**

4.4.1 Filter Preparation

Filters are pre-conditioned before arrival on site. The filters are dried in an oven at $180 \,^{\circ}$ C for a period of at least one hour and then placed to cool in a dessicator for at least four hours. The filters are then weighed on a five figure balance and placed in individual transport containers. Spare filters are prepared to obtain blank values.

4.4.2 Sampling Location

No site visit was undertaken prior to undertaking the sampling procedure, as monitoring had previously been undertaken at the site, during which time the sampling position, working platform, sampling ports, access and safety precautions were found to be satisfactory.

The internal dimension of the flue was known from the previous monitoring undertaken. However, further measurements were taken to check that the internal diameter had not changed.

Prior to sampling a pressure and temperature survey, using a pitot static tube, a micromanometer, a digital thermometer and a nickel-chromium/nickel-aluminium thermocouple, is carried out to check whether the flow conditions meet with the requirements of BS ISO 9096. From this initial survey sample locations, isokinetic flow rates, nozzle size, and sample period can be calculated. Sampling

4.5 Sample collection

A leak check is carried out before and after sampling to confirm all the suction is drawn through the nozzle.

With the required isokinetic flow rates known the sample probe was inserted into the stack at 90° to the gas flow, this is to stop any particulate matter impinging on the filter before sampling.

The filter head and probe were allowed to obtain the stack gas temperature.

The initial gas meter volume was noted and the suction device and timer started. The correct flow rate for isokinetic sampling was set and the nozzle positioned to face parallel to the gas flow.

Sampling was then carried out for the planned duration and number of sample points, recording all the necessary data for final calculations. On completion, the suction device, timer were stopped and the final gas meter volume recorded.

The probe was removed from the process stack and a further leak test carried out prior to removal of the filter, which was subsequently removed and placed in a storage container.

Any residual particulates upstream of the filter was washed with water and acetone into an appropriate beaker.

The above procedures were then repeated to obtain duplicate samples.

At all times during the sampling procedure the sampling technicians were in contact with the process operator to ensure that the plant was in full production and there were no changes in the process that might affect the representative nature of the samples collected.

4.6 Analysis of samples

On returning to the laboratory, the used filters were dried in an oven at 160 °C for a minimum of one hour and then desiccated and weighed as before. The water/acetone washings are first evaporated, without boiling, then dried and weighed as above. The total particulate mass is the sum of the differential filter weight added to the differential water/acetone component.

4.7 Calculation of results

The calculations were made using the formula specified in BS ISO 9096.

The recorded filter weights, velocity, temperature, sampling duration and internal flue dimensions were than used to calculate:-

- the mass rate of solids emission in kg/hr; and
- the solids concentration in mg/m^3 .

4.8 Sampling Results

Two particulate tests were carried out, under continuous operating conditions, to assess the emission concentration in the exhaust gases. The sample time of each test was 32 minutes, primarily due to the limited production time to enable completion of the test.

At the time of sampling, a mean particulate matter concentration of 16.8 mg/m^3 at reference conditions. It can be concluded, therefore, that the emission from this plant was found to comply with the emission limit currently imposed.

4.9 Comments

On the completion of sampling, the data from the PCME DT 990 continuous emission monitor was interrogated and the average results, which were recorded during each measurement period, noted. Levels of 15.0307 mg/m⁻³ (Test 1) and 13.3336 mg/m⁻³ (Test 2) were obtained together with an existing calibration factor of 6.9221. It can be concluded that the monitor could be adjusted to improve the level of accuracy and requires an adjustment of the calibration factor to 8.1880.

Full test data demonstrating procedural compliance with BS ISO 9096 for total particulate monitoring is provided the following sections.

5. SAMPLING RECORDS

5.1 - Process Conditions

Table A

Arrestment Plant:	Bag Filter
Particulate Type:	Aggregate
Plant Loading:	Continuous - Various grades
Appearance of plume:	No visible discharge

5.2 - Sampling Results

Table B

	Test Run No. 1.	Test Run No. 2.	Average
Time of Test:	08.30 - 09.02	09.09 - 09.41	
Sampling Duration: (mins)	32	32	
Gas Temperature (°C)	90	89	89
Mean Velocity at Sampling Points: (m/s)	14.62	14.64	14.63
Gas Flow Rate at STP (1): (m ³ /min)	403.7	406.4	405.0
Particulate Loading at STP (1): (mg/m ³)	17.65	15.90	16.78
Particulate at Normalised Conditions (2): (mg/m ³)			

(1) Particulate stated at 273K, 101.3kPa without correction for water vapour.

(2) State normalised conditions (eg 11% O_2 , etc).

5.3 - Calculations Sample Run No. 1

On-site me	easurements				
O2 =	18 %	CO2 =	2 %	N2 =	80.0 %
Bws =	0.03	Ps =	99.7 kPa	Ts =	363.3 K
	lolecular weigh	-			
Md = (0)			$(0.28 \times \% N_2)$	2)	
=	29.04 g/g mol	e			
Ms = M	lolecular weigh	t of gas wet (g/g mole)		
=	28.71 g/g mol	-	.8 8)		
	20171 8,8 1101	•			
Stack gas	velocity at sam	ple points			
V = K	p x Cp x Ö(Ts.	DP/Ps.Ms)		Kp =	4.07
=	14.62 m/s			DP =	102.4 average Dp at sample plane
				Cp =	1.00 pitot tube coefficient
Stack gas	volume at sam	ple points		-	-
$\mathbf{Q} = \mathbf{V}$	x A x 60			A =	0.64 area of stack m^2
=	558.2 m ³ /min				
				3	
		collected, st	andard conditi		
	00124 x Vlc			Vlc =	12 ml
= (0.0153 m^3				
Volumo of	gas metered,	standard oor	ditions (m^3)		
	-			Tm =	14 °C
$v msta = \underline{2}.$	<u>695 x Vm x (Pa</u>		<u>) X I U</u>		0.6853 m^3
	(1)	+ Tm)		Vm =	
	0.6578 m ³			Pa =	99.7 kPa
=	0.65/8 11			DH =	51.9 mm H ₂ O
				Yd =	1.020
Moisture o	ontent				
	wstd/(Vwstd +	Vmstd)			
	0.0227	(111500)			
Dry total f	low of stack ga	as, standard	conditions (m ³	/min)	
Qstd = Q	x Ps(2.695)(1	- <u>Bwo</u>)		Ts =	90.3 °C
	Ts +273	3		Ps =	99.7 kPa
=	404 m ³ /min				
Percent iso	okinetic				
%I = <u>(6</u>	5.184×10^5)(Ts +	-273) x Vmst	<u>d</u>	Aa =	31.7 area of nozzle m^2
	s x V x Aa x t x				
=	102.3 %	. /			

5.3 - Calculations Sample Run No. 1 Cont.

Filter & rinsing weights sample no. 1

weight gain on filters =	10.74 mg
weight of acetone wash =	0.87 mg
total weight gain (M) =	11.61 mg

Particulate concentration (mg/m³)

C = M/Vmstd $= 17.65 mg/m^3$

M = 11.61 mg

Particulate emission rate (kg/hr)

E = (C x Qstd x 60)/1000= 0.43 kg/hr

5.4 - Calculations Sample Run No. 2

	easurements					
O2 =	17.9 %	CO2 =	2.1 %	N2 =	80.0 %	
Bws =	0.02	$\mathbf{Ps} =$	99.7 kPa	Ts =	361.5 K	
	Iolecular weigh	-				
$\mathbf{Md} = (0$).44 x %CO ₂) +	$-(0.32 \times %O_2)$	$(0.28 \times \%)$ + (0.28 × %)	2)		
=	29.05 g/g mol	le				
M- M	(-11		(_/1.)			
	Iolecular weigh	-	g/g mole)			
=	28.80 g/g mol	le				
Stack gas	velocity at san	ple points				
-	p x Cp x Ö(Ts.			Kp =	4.07	
=				DP =		е
				Cp =	1.00 pitot tube coefficient	
Stack gas	volume at sam	ple points		-1	I	
-	x A x 60	r r r		A =	0.64 area of stack m^2	
=	3					
		collected, st	andard condit			
	.00124 x Vlc			Vlc =	12 ml	
= (0.0148 m^3					
X 7 - 1	· · · · · · · · · · · · · · · · · · ·		3			
	-		nditions (m ³)	-		
	.695 x Vm x (P	a + (DH/102)		Tm =	15 °C	
	.695 x Vm x (P			Vm =	0.6995 m ³	
$Vmstd = \underline{2.}$	<u>.695 x Vm x (P</u> (T	a + (DH/102)		Vm = Pa =	0.6995 m ³ 99.7 kPa	
$Vmstd = \underline{2.}$.695 x Vm x (P	a + (DH/102)		Vm = Pa = DH =	0.6995 m ³ 99.7 kPa 53 mm H ₂ O	
$Vmstd = \underline{2.}$	<u>.695 x Vm x (P</u> (T	a + (DH/102)		Vm = Pa =	0.6995 m ³ 99.7 kPa	
Vmstd = <u>2</u> .	<u>6695 x Vm x (P</u> (T 0.6692 m ³	a + (DH/102)		Vm = Pa = DH =	0.6995 m ³ 99.7 kPa 53 mm H ₂ O	
Vmstd = <u>2</u> . = (Moisture o	695 x Vm x (P (T 0.6692 m ³ content	<u>a + (DH/102)</u> + Tm)		Vm = Pa = DH =	0.6995 m ³ 99.7 kPa 53 mm H ₂ O	
Vmstd = 2 $= 0$ $Moisture of Bwo = V$	695 x Vm x (P (T 0.6692 m ³ content fwstd/(Vwstd +	<u>a + (DH/102)</u> + Tm)		Vm = Pa = DH =	0.6995 m ³ 99.7 kPa 53 mm H ₂ O	
Vmstd = 2 $= 0$ $Moisture of Bwo = V$	695 x Vm x (P (T 0.6692 m ³ content	<u>a + (DH/102)</u> + Tm)		Vm = Pa = DH =	0.6995 m ³ 99.7 kPa 53 mm H ₂ O	
Vmstd = 2 $= 0$ $Moisture of Bwo = V$ $= 0$	695 x Vm x (P (T 0.6692 m ³ content fwstd/(Vwstd + 0.0216	<u>a + (DH/102)</u> + Tm) Vmstd)	<u>)) x Yd</u>	Vm = Pa = DH = Yd =	0.6995 m ³ 99.7 kPa 53 mm H ₂ O	
Vmstd = 2 $= 0$ $Moisture of Bwo = V$ $= 0$ $Dry total f$	695 x Vm x (P (T 0.6692 m ³ content wstd/(Vwstd + 0.0216 low of stack g	<u>a + (DH/102)</u> + Tm) Vmstd) as, standard		Vm = Pa = DH = Yd =	0.6995 m ³ 99.7 kPa 53 mm H ₂ O	
Vmstd = 2 $= 0$ $Moisture of Bwo = V$ $= 0$ $Dry total f$	695 x Vm x (P (T 0.6692 m ³ content fwstd/(Vwstd + 0.0216	<u>a + (DH/102)</u> + Tm) Vmstd) as, standard <u>- Bwo)</u>	<u>)) x Yd</u>	Vm = Pa = DH = Yd =	0.6995 m ³ 99.7 kPa 53 mm H ₂ O 1.020	
Vmstd = 2 $= 0$ $Moisture of Bwo = V$ $= 0$ $Dry total f$	695 x Vm x (P (T 0.6692 m ³ content wstd/(Vwstd + 0.0216 low of stack g <u>x Ps(2.695)(1</u>	<u>a + (DH/102)</u> + Tm) Vmstd) as, standard <u>- Bwo)</u> 3	<u>)) x Yd</u>	Vm = Pa = DH = Yd = ⁵ /min) Ts =	0.6995 m ³ 99.7 kPa 53 mm H ₂ O 1.020 88.5 °C	
Vmstd = 2 $= 0$ $Moisture of Bwo = V$ $= 0$ $Dry total f Qstd = Q$	695 x Vm x (P (T 0.6692 m ³ content wstd/(Vwstd + 0.0216 low of stack g <u>x Ps(2.695)(1</u> Ts +27	<u>a + (DH/102)</u> + Tm) Vmstd) as, standard <u>- Bwo)</u> 3	<u>)) x Yd</u>	Vm = Pa = DH = Yd = ⁵ /min) Ts =	0.6995 m ³ 99.7 kPa 53 mm H ₂ O 1.020 88.5 °C	
Vmstd = 2 $= 0$ $Moisture of Bwo = V$ $= 0$ $Dry total f Qstd = Q$	6.695 x Vm x (P (T 0.6692 m ³ content wstd/(Vwstd + 0.0216 low of stack g <u>x Ps(2.695)(1</u> Ts +27 406.4 m ³ /min	<u>a + (DH/102)</u> + Tm) Vmstd) as, standard <u>- Bwo)</u> 3	<u>)) x Yd</u>	Vm = Pa = DH = Yd = ⁵ /min) Ts =	0.6995 m ³ 99.7 kPa 53 mm H ₂ O 1.020 88.5 °C	
Vmstd = 2 $= 0$ $Moisture of Bwo = V$ $= 0$ $Dry total for Qstd = Q$ $=$ Percent iso	6.695 x Vm x (P (T 0.6692 m ³ content wstd/(Vwstd + 0.0216 low of stack g <u>x Ps(2.695)(1</u> Ts +27 406.4 m ³ /min	<u>a + (DH/102)</u> + Tm) Vmstd) as, standard <u>- Bwo)</u> 3) <u>x Yd</u> conditions (m ³	Vm = Pa = DH = Yd = ⁵ /min) Ts =	0.6995 m ³ 99.7 kPa 53 mm H ₂ O 1.020 88.5 °C	
Vmstd = 2 $= 0$ $Moisture of Bwo = V$ $= 0$ $Dry total f Qstd = Q$ $=$ $Percent iso % I = (6)$	$\frac{695 \times \text{Vm} \times (\text{P})}{(\text{T})}$ (T) 0.6692 m^{3} (content) $\frac{1}{(\text{wstd}/(\text{Vwstd} + 0.0216))}$ (content) $\frac{1}{(\text{N})} \frac{1}{(\text{N})} \frac{1}{$	<u>a + (DH/102)</u> + Tm) Vmstd) as, standard <u>- Bwo)</u> 3 + <u>-273) x Vmst</u>) <u>x Yd</u> conditions (m ³	Vm = Pa = DH = Yd = 2/min) Ts = Ps =	0.6995 m ³ 99.7 kPa 53 mm H ₂ O 1.020 88.5 °C 99.7 kPa	
Vmstd = 2 $= 0$ $Moisture of Bwo = V$ $= 0$ $Dry total f Qstd = Q$ $=$ $Percent iso % I = (6)$	6695 x Vm x (P (T 0.6692 m ³ content wstd/(Vwstd + 0.0216 flow of stack g x Ps(2.695)(1 Ts +27 406.4 m ³ /min	<u>a + (DH/102)</u> + Tm) Vmstd) as, standard <u>- Bwo)</u> 3 + <u>-273) x Vmst</u>) <u>x Yd</u> conditions (m ³	Vm = Pa = DH = Yd = 2/min) Ts = Ps =	0.6995 m ³ 99.7 kPa 53 mm H ₂ O 1.020 88.5 °C 99.7 kPa	

5.4 - Calculations Sample Run No. 2 Cont.

Filter & rinsing weights sample no. 2

weight gain on filters =9.9 mgweight of acetone wash =0.74 mgtotal weight gain (M) =10.64 mg

Particulate concentration (mg/m³)

C = M/Vmstd $= 15.90 mg/m^3$

M = 10.64 mg

Particulate emission rate (kg/hr)

E = (C x Qstd x 60)/1000= 0.39 kg/hr

5.5 - Sample Blank

An overall sample blank was taken after the measurement series, following the sampling procedure in the methodology without starting the suction device and keeping the blank in the duct for 15 minutes with the sampling nozzle 180° from the direction of flow. This leads to an estimation of the dispersion of results related to the whole procedure.

weight gain on filters = 0.00036 mg weight of acetone wash = 0.00009 mg total weight gain (M) = 0.00045 mg

Particulate concentration (mg/m³)

C = M/Vmstd $= 0.68 mg/m^3$

 $M= \qquad 0.45 \ mg$

5.6 - On Site Velocity and Flow Data

Company	EXPRESS ASPHALT	Stack Diameter	0.90	m
Site	DOYLE DRIVE	Area	0.64	m^2
Location	ROADSTONE COATING PLANT	Barometric Pressure	99.7	kPa
Job No	299	Stack Pressure	0.03	kPa
Operators	AJY/MJR	Pitot Tube Coefficient	0.997	

Preliminary readings taken before sampling						
Pitot Traverse B						
Pitot	D P	Temp	D P	Temp		
Settings	ра	°C	ра	°C		
1	100	91	98	90		
2	116	91	112	90		
3	118	90	121	91		
4	115	90	110	91		
5	98	90	87	91		
6	83	89	84	91		
7	95	89	94	90		
8	104	90	98	90		
9	110	90	97	90		
10	97	90	83	90		

av temp (K)=((average temp traverse A+average temp traverse B)/2)+273	363
av press (Pa)=((average press traverse A+average press traverse B)/2)	101

Suitability of sampling positions & Required No. of sample points	Actual Stack Conditions
Permitted highest to lowest pressure range $= 9:1$	1.5 : 1
Negative pressure	Not permitted
Differential pressure minimum > 5 Pa	83
No. of sampling points	8

5.7 - Sampling Conditions

	Sam	ple Run N	No. 1	Sam	ple Run N	No. 2
Sample	Stack	Velocity	Nozzle	Stack	Velocity	Nozzle
Position	Temp °C	Pressure DP (Pa)	Area mm ²	Temp °C	Pressure DP (Pa)	Area mm ⁴
0.065D	91	100	31.7	88	102	31.7
0.25D	90	118	31.7	88	119	31.7
0.75D	90	104	31.7	89	107	31.7
0.935D	90	97	31.7	89	99	31.7
0.065D	90	98	31.7	89	96	31.7
0.25D	91	121	31.7	88	123	31.7
0.935D	90	98	31.7	88	96	31.7
0.935D	90	83	31.7	89	85	31.7

5.8 - Weighing Results

The below filters and acetone rinsings were weighed on a balance in a temperature controlled room with corrections made for differences in atmospheric pressure. Control parts and blank filters are used to confirm accuracy of weighings.

· · · · · ·						
		Weight		Sample	%	
Sample		gms		time at each	weight	
Run No.1.	Ref No.	Before	After	Collected	point (mins)	gain
Filter	CV1	0.03629	0.04703	0.01074	4.0	29.6%
Acetone	CV1A	0.03608	0.03695	0.00087	4.0	2.4%
		Tota	l weight =	0.01161		
			Weight		Sample	
Sample			gms		time at each	
Run No.2.	Ref No.	Before	After	Collected	point (mins)	
Filter	CV2	0.03658	0.04648	0.00990	4.0	27.1%
Acetone	CV2A	0.03543	0.03617	0.00074	4.0	2.1%
		Tota	l weight =	0.01064		
			Weight		Sample	
Sample			gms		time at each	
Blank	Ref No.	Before	After	Collected	point (mins)	
Filter	CV3	0.03563	0.03599	0.00036	n/a	1.0%
Acetone	CV3A	0.03533	0.03542	0.00009	n/a	0.3%
		Tota	l weight =	0.00045		

5.9 - Main conditions for compliance with BS ISO 9096:2003

The following requirements must be met:

Preliminary Velocity Survey

	Pass	Fail
No negative flow at sampling points	*	
Direction of gas flow within 15° of flue axis	*	
Pitot-static pressure differential greater than 5 Pa (3m/s)	*	
Ratio of highest to lowest pitot-static readings less than 9:1	*	

Sampling procedure

Sampling plane was corectly positioned	*	
Sampling centroids of equal area	*	
bumping contoins of equal area	I	
Nozzle was facing upstream to within $\pm 10^{\circ}$	*	
Leak check performed	*	
Constant 'at' during cumulative sampling	*	

Post Sampling Operations

Leak test performed	*	
Isokinetic rate 95 % to 115 %	*	
Samples achieved stable weights	*	

Note : A single tick in the "fail" column indicates that this test does not comply with the full provisions of BS ISO 9096:2003. Due to site/sampling locations it is not always practically possible for all the conditions to be met. Best practical means are employed to try and achieve a representative result.