MEASUREMENT OF ENVIRONMENTAL EMISSIONS DURING

SURFACE TREATMENT OF METAL

at

DUNLOP AEROSPACE BRAKING SYSTEMS
HOLBROOK LANE
COVENTRY
WARWICKSHIRE
CV6 4AA

REPORT NO:	OEH/33550/STAK/SD:	143 CLIENT REF:	Service Contract: 451120
11.70		r Últinganag	
DATE OF VISIT:	🗱 31 January 2005 🚛	CONTACT ON SITE	E: Mr Dave Warrington
DATE OF REPORT:	14 February 2005	DISK REFERENCE	N:\Consultants\$\Air.Quality\Paul
			ূি Calland\Jobs 2003-2004\33550
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Dunlop\OEH 33550 CS F.doc

DATA PROTECTION ACT REGISTRATION NO: B0479 03 4

CONFIDENTIALITY UNDERTAKING

We undertake that we will not knowingly make use or disclose any confidential information or photographs relating to your business which may have come to our knowledge or attention as a result of our visit on site or otherwise as a result of the work carried out by us in connection with the preparation of this report. If you have any queries or comments regarding this report, please contact the Customer Services, OEH Group Limited Tel: 0121 359 5361.

Project No: OEH 33550 CS F Template Ref: OEH812 Stak Issue 13-01 ©OEH Group Umited 2001

TABLE OF CONTENTS

EXE	CUTIVE SUMMARY	3
1.	INTRODUCTION	.4
	1.1 PURPOSE OF SURVEY 1.2 TERMS OF REFERENCE 1.3 PLANT CONDITIONS	4
2	PROCESS DESCRIPTION	4
3	METHODS	4
4	3.1 STACK SAMPLING 3.1.1 Stack Velocity & Temperature Measurements 3.1.2 Oxides of Nitrogen 3.1.3 Nitric Acid Mist 3.1.4 Fluorides 3.2 ANALYSIS 3.2.1 Techniques & Detection Limits 3.2.2 Accreditation PRESENTATION OF RESULTS	5 5 5 5 5
5	DISCUSSION	6
	5.1 OXIDES OF NITROGEN 5.2 NITRIC ACID MIST 5.3 HYDROGEN FLUORIDE	6 6 6
6	CONCLUSIONS	7
7	APPENDICES	7
	APPENDIX I: DETAILED RESULTS TABLE	7

EXECUTIVE SUMMARY

Date Of Test & Test Areas Emissions sampling for Oxides of Nitrogen, Nitric Acid Mist and Hydrogen Fluoride from the Metal Treatment processes stack conducted on 31st January 2005.

Test Conditions

All processes were being operated under normal conditions throughout the sampling periods.

Compliance -

Full compliance with the authorisation was achieved during this survey.

Surveyed and Reported by:

Verified by:

Environmental Scientist

Andy Barnes BSc (Hons)
Environmental Scientist

for and on behalf of OEH Group Limited

If you have any queries or comments regarding this report, please contact Customer Services, OEH Group Ltd. Tel: 0121 359 5361.

PG471 (04)

1 INTRODUCTION

1.1 Purpose of Survey

The aim of the survey described in this report was to verify compliance with the requirements of the Local Authority Authorisation and the relevant Process Guidance Note, PG4/1(95) – Processes for the surface treatment of metals.

1.2 Terms of Reference

Dunlop Aerospace Braking Systems, Holbrook Lane, Coventry, Warwickshire, CV6 4AA, has commissioned OEH Group Limited to carry out the work described in this report. Monitoring was carried out on 31st January 2005, by Paul Calland, at the request of Mr Pat Cullen.

The work was carried out in accordance with OEH Proposal ref: AL-11275 & 6, dated 18th November 2004, and the client's instructions as set out in Service Contract Ref: 451120.

OEH Group is accredited under ISO-9002 for the provision of health, safety and environmental consultancy services. The work described in this report was carried out in accordance with our ISO-9000 Standard Operating Procedures and Level III: Consultancy Work Instructions. The field sampling and interpretations made in this report are not covered by the scope of OEH's accreditation under UKAS.

1.3 Plant conditions

Production schedules on the dates of the survey were described as normal. Thus, the data reported herein must be considered typical and representative of the environmental levels experienced during normal daily workloads on this site.

2 PROCESS DESCRIPTION

Dunlop Aerospace Braking Systems carry out surface preparation and treatment of aluminium, stainless steel and titanium aviation components at their site in Holbrook Lane, Coventry. The process is prescribed by virtue of the use of nitric and hydrofluoric acids for passivation and surface etching, including de-smutting of metals.

The processes are described in detail in previous OEH Reports.

3 METHODS

3.1 Stack Sampling

3.1.1 Stack Velocity & Temperature Measurements

Stack velocity was investigated using an ellipsoidal nosed pitot tube coupled to an electronic manometer. Temperature measurements were taken using a K-type thermocouple connected to an electronic thermometer. The procedure is designed to fulfil the main procedural requirements of BS EN 13284: 2002 for the preliminary flow and temperature traverse and for the calculation of volumetric flow rate.

The manometer and thermometer are subject to regular calibration by a UKAS accredited test house using NPL traceable standards. All to provide calibration

Cerhhantes.

Project No: OEH 33550 CS F Template Ref: OEH812 Stak Issue 13-01 ©OEH Group Limited 2001

Page 4 of 9

greed to State what mis is.

OEH Group Limited

may help.

3.1.2 Oxides of Nitrogen

Periodic extractive sampling for the oxides of nitrogen (NO, NO₂ & NO₃) was carried out to the main procedural requirements of EPA 7/ using a pre-calibrated portable pump connected to an impinger containing a solution of sulphuric acid/ hydrogen peroxide. Analysis is by Ion Chromatography,

after final bottle?

3.1.3 Nitric Acid Mist

by need by received out to the main procedural Periodic extractive sampling for nitric acid (NO₃) mist was carried out to the main procedural requirements of NIOSH 7903, using a pre-calibrated portable pump connected to a silica gel adsorption tube. Analysis is by Ion Chromatography.

meter ?

3.1.4 Fluorides

Periodic extractive sampling for fluorides was conducted using a calibrated pump connected to an impinger sampling train containing solutions of 0.1N Sulphuric acid (H2SO4) and 0.1N Sodium Hydroxide (NaOH). The method is based on, and intended to satisfy the main procedural requirements of USEFA 26. Analysis is by Ion Chromatography.

does nethan io meer do it as APP 2 says PC411

3.2 Analysis

3.2.1 Techniques & Detection Limits

Analyte	Analysis Technique	Detection Limit	Analytical Precision, %	Method Reference
Oxides of Nitrogen	Ion Chromatography	1 μg	10	EPA 7
Nitric Acid Mist	Ion Chromatography	1 µg	10	NIOSH 7903
Halogens & Halides	Ion Chromatography	1 µg	10	USEPA 26

3.2.2 Accreditation

Stack sampling team is a member of the Source Testing Associ	ation	
¹ UKAS lab number 1821		L
- Anions; Based on Various MDHS, NIOSH, EPA & internal methods	Yes	No
Analysisa		第四周
Consultancy	Yes	No
Service Category	9002	UKAS

4 PRESENTATION OF RESULTS

The following table gives summary details of the mean emission concentrations measured for all parameters.

Sampling Position	Mean Total NO.	Mean Nitric Acid	Mean HE
	Emission	Mist Emission	Emission
	(mg.m ²)	(mg·m²)	(mg.m ⁻³)
Metal Treatment Stack	7.5	4.2	0.03

Results reported at Standard Conditions of 273K and 101.3kPa, no correction for water vapour content.

Appendix I of this report lists in tabular form details of the results for all parameters. For ease of interpretation, the data are classified under the following columns.

- Location of sampling and activity monitored.
- Time of sampling.
- Analyte monitored.
- Release limits, in milligrammes per cubic metre.
- Stack release concentrations, in milligrammes per cubic metre. Release data were corrected for standard temperature (273K), and pressure (101.3kPa).

Stack Parameters; Mean air velocity (m/sec), mean volume flow rate (Nm³/hr), mean temperature (°C), cross sectional area (m²).

5 DISCUSSION

The processes monitored are covered, a Local Authority Authorisation and by the Secretary of States Guidance Note PG4/1(95) – Processes for the surface treatment of metals. The following emission limits apply:

Hydrogen Fluoride	10 mg.m ⁻³ (1 hour mean)
Oxides of Nitrogen	400 mg.m ⁻³ (1 hour mean)
Parameter.	Emissions Limit

5.1 Oxides of Nitrogen

Emission levels of total oxides of nitrogen from the stack, at an average of 7.5 mg.m $^{-3}$, were significantly below the 400mg.m $^{-3}$ limit.

5.2 Nitric Acid Mist

Emission levels of nitric acid from the stack averaged 4.2 mg.m $^{-3}$, and made up around 60% of the total NO_x emission.

5.3 Hydrogen Fluoride

Emission levels from the stack, at an average of $0.03 \, \text{mg.m}^{-3}$, were significantly below the $10 \, \text{mg.m}^{-3}$ limit.

Project No: OEH 33550 CS F Template Ref: OEH812 Stak Issue 13-01 ©OEH Group Limited 2001

6 CONCLUSIONS

From the data reported it can be seen that the processes demonstrate compliance with the authorisation and Process Guidance Note under normal and typical workloads.

7 APPENDICES

Appendix I: Detailed Results Table

APPENDIX I DETAILED RESULTS TABLE

Project No: OEH 33550 CS F Template Ref: OEH812 Stak Issue 13-01 ©OEH Group Limited 2001

The state of the s

:

RELEASE DATA FOR DUNLOP AEROSPACE BRAKING SYSTEMS

			HE VALLE ON THE WARENING	Saepens Stebe
	STACK REFER TAND ACTIV MONITOR	HERENCE TO THE TRANSPORT OF THE TRANSPOR	Metal Treatment Stack	ent Stack
	สายไฟเฮดิกรงก	SAMPLINGE	10:00 – 11:00	11:02 ~ 12:02
	NO TEOFSAN	SAMPLENGE	-31 st January 2005	y 2005
ANATAGES)	STIND	RELEASE LIMIT		
Total Oxides of Nitrogen	mg.m.3	400	8.2	6.8
Nitric Acid Mist	mg.m ₋₃	e/u	5.4	2.9
Hydrogen Fluoride	mg.m.3	10	0.03	0.03
			IVOLSKII DIAVISI	ALIPARAMETERS
Mean Air Velocity	m/sec	%01 ∓	5.2	
Mean Volume Flow Rate	Nm³/hr	%01 ∓	27076	
Mean Temperature	၁့	% 1 ∓	18	
Cross Sectional Area	m ²	*1%	1.540	

¹Release data and stack flow parameters have been corrected for standard temperature (273°K) and pressure (101.3kPa) but no correction has been made for water vapour.

Project No: OEH 33550 CS F Templata Ref: OEH812 Stak Isaue 13-01 GOEH Group Limited 2001

Plant Type	Metal Treatment	Magazi Star	Stack Area (m²) 1.540
Job Number	(OEH:333550		Ambient Temp (C)
Client Name	Dunlop ABS	9 65	
Date	31-Jan-05	1	Pitot Factor 1.00
1			Pitot Factor (sgrt) 1:00
1	*	₫b*\`	Stack Pressure (Pa) 120
ŀ			Ambient Pressure (KPa) 101.3

PITOT SURVEY

A1	A2	A3	A4	A5	A6	A7	A8	A9	A10
0.065	0.150	0.250	0.350	0.450	0.550	0.650	0.750	0.850	0.935
6	10	14	18	20	22	20	19	14	9
18	18	18	18	18	18	18	18	18	18
3.1	4.1	4.8	5.4	5.7	6.0	5.7	5.6	4.8	3.9
B1	B2	B3	B4	B5	B6	B7	B8	B9	B10
0.065	0.150	0.250	0.350	0.450	0.550	0.650	0.750	0.850	0.935
10	15	17	21	23	25	27	22	17	10
_ 18	18	18	18	18	18	18	18	18	18
4.1	5.0	5.3	5.9	6.2	6.4	6.7	6.0	5.3	4.1
	0.065 6 18 3.1 B1 0.065 10 18	0.065 0.150 6 10 18 18 3.1 4.1 B1 B2 0.065 0.150 10 15 18 18	0.065 0.150 0.250 6 10 14 18 18 18 3.1 4.1 4.8 B1 B2 B3 0.065 0.150 0.250 10 15 17 18 18 18	0.065 0.150 0.250 0.350 6 10 14 18 18 18 18 18 3.1 4.1 4.8 5.4 B1 B2 B3 B4 0.065 0.150 0.250 0.350 10 15 17 21 18 18 18 18	0.065 0.150 0.250 0.350 0.450 6 10 14 18 20 18 18 18 18 18 3.1 4.1 4.8 5.4 5.7 B1 B2 B3 B4 B5 0.065 0.150 0.250 0.350 0.450 10 15 17 21 23 18 18 18 18 18	0.065 0.150 0.250 0.350 0.450 0.550 6 10 14 18 20 22 18 18 18 18 18 18 3.1 4.1 4.8 5.4 5.7 6.0 B1 B2 B3 B4 B5 B6 0.065 0.150 0.250 0.350 0.450 0.550 10 15 17 21 23 25 18 18 18 18 18	0.065 0.150 0.250 0.350 0.450 0.550 0.650 6 10 14 18 20 22 20 18 18 18 18 18 18 18 18 3.1 4.1 4.8 5.4 5.7 6.0 5.7 B1 B2 B3 B4 B5 B6 B7 0.065 0.150 0.250 0.350 0.450 0.550 0.650 10 15 17 21 23 25 27 18 18 18 18 18 18	0.065 0.150 0.250 0.350 0.450 0.550 0.650 0.750 6 10 14 18 20 22 20 19 18 18 18 18 18 18 18 18 3.1 4.1 4.8 5.4 5.7 6.0 5.7 5.6 B1 B2 B3 B4 B5 B6 B7 B8 0.065 0.150 0.250 0.350 0.450 0.550 0.650 0.750 10 15 17 21 23 25 27 22 18 18 18 18 18 18 18 18	0.065 0.150 0.250 0.350 0.450 0.550 0.650 0.750 0.850 6 10 14 18 20 22 20 19 14 18 18 18 18 18 18 18 18 18 3.1 4.1 4.8 5.4 5.7 6.0 5.7 5.6 4.8 B1 B2 B3 B4 B5 B6 B7 B8 B9 0.065 0.150 0.250 0.350 0.450 0.550 0.650 0.750 0.850 10 15 17 21 23 25 27 22 17 18 18 18 18 18 18 18 18

Absolute Mean Duct Velocity (m/s)
Absolute Flow Rate (m²/hr)
Normalised Flow Rate (Nm²/hr)

5.2 [28856] [27076]