

Ant a Limbolono i Lorina artoor

52 Offerton Industrial Estate, Hempshaw Lane, Stockport, SK2 5TJ.

Tel: 0161 477 3004 Fax: 0161 480 4642

Mobile: 07973 319576 (24 Hours) Email: james.bealing@scientifics.com

Stack Emissions Testing Report

Total Particulate Matter
Hydrogen Chloride
Organic Compounds
Carbon Monoxide

Coventry City Council

Canley Crematorium

Cremator No. 1

Sampling Date(s)

17th April 2002

Report by

Mark Woodruff

Job Number

LAB 3561

Contents

	Page
Title Page	1
Introduction	2
Written Summary	3
Emissions Summary & Preliminary Temperature and Velocity Profile	4
Total Particulate Matter Summary	5
Hydrogen Chloride Summary	5
Organic Compounds Summary	5
Carbon Monoxide Summary	₊ 5
Equations 1 - 3	6 - 8
Organic Compounds & Carbon Monoxide Emissions Data	9 - 11
Stack Diagram	12
Plant Layout	12
Total Particulate Matter Sampling Methodology	13 - 14
Sampling Equipment	15
Organic Compounds Sampling Methodology	16
Combustion Gas Sampling Methodology	17
Quality Assurance Checklist	18
Stack Emissions Testing Team	19
Deviations From Test Methods	19
Conclusion	20

Introduction

Coventry City Council operate a Crematoria at Canley Crematorium which is subject to Local Air Pollution Control by Coventry County Council under the Environmental Protection Act 1990, Part 1.

Scientifics Limited were commissioned by Coventry City Council to carry out stack emissions testing to determine the releases of prescribed pollutants from the following Cremator under normal operating conditions.

Company	Coventry City Council			
Site	Canley Crematorium			
Stack	Cremator No. 1			
Sampling Date(s)	17th April 2002			
Cremator Manufacturer	Furance Construction Ltd			
Cremator Model	Newton			
Cremator Serial Number	CF522			
Operating Conditions	Test 1 Test 2			
Coffin Construction	Standard Standard			
Mass of Deceased	Average Average			
Cremation Number	140263 140265			
Process	'Crematoria'			
Guidance Note	PG5/2(95) <u>,</u>			

Any deviations from the respective test methods are noted in the conclusion.

Written Summary

Total Particulate Matter

Passed

Two particulate tests were performed, each lasting a complete cremation. The mean sampling time was 98 minutes. The mean particulate concentration was 0.6 mg/m³ at reference conditions. This value is below the emission concentration limit of 80 mg/m³ specified in PG5/2(95).

nead max?

max O.AV

The sampling was performed in accordance with the main procedural requirements of US EPA Method 5 using a Air Testing & Support Manual Sampling Train.

Hydrogen Chloride

Passed

Two hydrogen chloride tests were performed, each lasting a complete cremation. The mean sampling time was 98 minutes. The mean hydrogen chloride concentration was 0.61 mg/m³ at reference conditions. This value is below the emission concentration limit of 200 mg/m³ specified in PG5/2(95).

The sampling was performed in accordance with the main procedural requirements of US EPA Method 26A using a Air Testing & Support Manual Sampling Train.

Organic Compounds

Passed

Two organic compounds tests were performed, each lasting a complete cremation. The mean sampling time was 98 minutes. The mean organic compounds concentration was 4.1 mg/m³ at reference conditions. This value is below the emission concentration limit of 20 mg/m³ specified in PG5/2(95).

max 7. V

The sampling was performed in accordance with the main procedural requirements of US EPA Method 25A using a heated sampling line and a Signal 3010 MINIFID portable VOC analyser with detection by FID calibrated against 11 ppm propane span gas.

Carbon Monoxide Passed

Two carbon monoxide tests were performed, each lasting a complete cremation. The mean sampling time was 98 minutes. The mean carbon monoxide concentration was 12 mg/m³ at reference conditions. This value is below the emission concentration limit of 100 mg/m³ specified in PG5/2(95).

The sampling was performed using a heated sampling line with a Testo 339 gas conditioning unit and a Testo 350 flue gas analyser with detection by electrochemical cells calibrated against 99 ppm carbon monoxide span gas.

Reference conditions are 273K, 101.3kPa and 11% oxygen, dry gas.

Emissions Summary

Company

Coventry City Council

Site

Canley Crematorium

Stack

Cremator No. 1

Sampling Date(s)

17th April 2002

Parameter	Units	Result	Limit	Outcome
Total Particulate Matter	mg/m ³	0.6	- 80	Passed
Total Particulate Matter Emission Rate	g/hr	0.47	-	•
Isokinetic Variation	%	-3.7	-	-
Hydrogen Chloride	mg/m ³	0.61	200	Passed
Hydrogen Chloride Emission Rate	g/hr	0.48	<u> </u>	
Organic Compounds	mg/m³	4.1	20	Passed
Organic Compounds Emission Rate	g/hr	3.6	-	-
Carbon Monoxide	mg/m³	12	100	Passed
Carbon Monoxide Emission Rate	g/hr	9.4	-	•
Oxygen	% v/v	11.2	-	-
Temperature	့ C	819	-	-
Moisture	% v/v	3.9	-	-
Gas Velocity	m/s	8.5	-	-
Gas Volumetric Flow Rate (Actual)	m³/hr	3456	. •	-
Gas Volumetric Flow Rate (STP)	m³/hr	830		-

All results are mean values, with pollutant concentrations expressed at reference conditions. Reference conditions are 273K, 101.3kPa and 11% oxygen, dry gas.

Preliminary Velocity and Temperature Profile

	Line A				Line B	
Traverse	Dynamic	Temp	Velocity	Dynamic	Temp	Velocity
Point	Pressure	°C	m/s	Pressure	°C	m/s
	Pa			Pa	i	
1	17	805	7.98	21	808	8.88
2	18	806	8.22	20	807	8.67
3	15	804	7.49	18	809	8.23
4	17	808	7.99	19	806	8.44
5	. 16	807	7.75	20	808	8.67
6	19	807	8.45	17	809	8.00
7	18	806	8.22	18	809	8.23
- 8	17	806	7.99	19	810	8.46
9	18	808	8.22	18	811	8.24
10	19	808	8.45	18	810	8.23
Mean	17	807	8.08	18	809	8.40

Total Particulate Matter Summary

Particulate	Sampling Times	Concentration	Emission Rate	
		mg/m ³	g/hr	
Test 1	12:14 - 13:51	0.41	0.37	
Test 2	14:10 - 15:49	0.79	0.57	
Mean Particulate Concentration		0.60	0.47	

Reference conditions are 273K, 101.3kPa and 11% oxygen, dry gas.

Hydrogen Chloride Summary

HCI	Lab Result	Lab Result Volume Sampled Concentration		Emission Rate
	mg	m^3	mg/m ³	g/hr
Test 1	0.74	1.7140	0.43	0.39
Test 2	Test 2 1.2 1.5123		0.79	0.57
Mean HCI Concentration		0.61	0.48	

Reference conditions are 273K, 101.3kPa and 11% oxygen, dry gas.

Organic Compounds Summary

Organic Compounds	Sampling Times	Concentration	Emission Rate
		mg/m³	g/hr
Test 1	12:14 - 13:51	7.0	6.4
Test 2 14:10 - 15:49		1.1	0.79
Mean Organic Compounds Concentration		4.1	3.6

Reference conditions are 273K, 101.3kPa and 11% oxygen, dry gas.

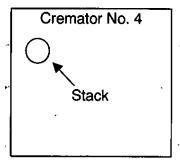
Carbon Monoxide Summary

Carbon Monoxide	Sampling Times	Concentration mg/m ³	Emission Rate g/hr
Test 1	12:14 - 13:51	6.3	5.8
Test 2 14:10 - 15:49		18	13
Mean Carbon Monoxide Concentration		12	9.4

Reference conditions are 273K, 101.3kPa and 11% oxygen, dry gas.

Test	1	2	Units
Date '	17.04.02	17.04.02	-
Absolute pressure of stack gas, P _s			
Barometric pressure, P _b	759.0	758.3	mm Hg
Stack static pressure, P _{static}	5.10	5.10	mm H₂O
$P_s = P_b + (P_{static})$	759.4	758.6	mm Hg
13.6			
Volume of water vapour collected, V _{wstd}			
Impinger volume collected	41	30	ml
Silica gel weight increase	14	22	g
Total volume of liquid collected, V _{lc}	55	52	ml
$V_{wstd} = (0.001246)(V_{lc})$	0.0682	0.0648	m³
Volume of gas metered, V _{mstd}			,
Volume of gas sample through gas meter, V _m	1.8815	1.7776	m ³
Gas meter correction factor, Y _d	0.9787	0.9787	-
Average dry gas meter temperature, T _m	25.5	26.0	°C
Average pressure drop across orifice, ΔH	51.85	37.59	mm H ₂ O
$V_{mstd} = (0.3592)(V_m)(P_b + (\Delta H/13.6))(Y_d)$	1.6903	1.5905	m³
T _m + 273	•		
Volume of gas at X% oxygen, V _{mstd@X% oxygen}			
% oxygen measured in gas stream, act%O ₂	10.9	11.5	%
% oxygen at which results required X%	11.0	11.0	%
% oxygen in ambient air by volume	20.9	20.9	%
$O_{xygen@11\%} = 20.9 - act\%O_2$	1.01	0.95	-
20.9 - X%			
$V_{\text{mstd}@X\%oxygen} = (V_{\text{mstd}})(O_{\text{xygen}@11\%})$	1.7140	1.5123	m ³
Moisture content, B _{wo}			
$B_{wo} = V_{wstd}$	0.039	0.039	m ³
V _{mstd} + V _{wstd}			
	3.88	3.91	%
Wet volume of gas metered, V _{mstw}			
V _{mstw} = V _{mstd@X%oxygen} + V _{wstd}	1.7822	1.5771	m ³

Test	1	2	Units
Date	17.04.02	17.04.02	-
Molecular weight of dry gas stream, M _d			
CO ₂	5.7	5.4	%
O ₂	10.9	11.5	%
co	0.0006	0.0015	%
Total	16.58	16.85	%
N ₂ (100 -Total)	83.42	83.15	%
$M_d = 0.44(\%CO_2) + 0.32(\%O_2) + 0.28(\%CO + \%N_2)$	29.35	29.32	g/gmol
Molecular weight of stack gas (wet), M _s			
$M_s = M_d(1 - B_{wo}) + 18(B_{wo})$	28.91	28.87	g/gmol
Velocity of stack gas, V _s		<u></u>	
Pitot tube velocity constant, K _p	34.97	34.97	-
Velocity pressure coefficient, C _p	0.79	0.79	-
Average of velocity heads, ΔP_{avg}	2.19	1.61	mm H ₂ O
Average square root of velocity heads, √∆P	1.48	1.27	√mm H₂O
Average stack gas temperature, T _s	800	839	°C
$V_s = (K_p)(C_p)(\sqrt{\Delta P})(\sqrt{T_s} + 273)$	9.03	7.90	m/s
$\sqrt{(Ms)(Ps)}$		ı	
Actual flow of stack gas, Q _a			
Area of stack, A _s	0.11	0.11	m²
$Q_a = (60)(A_s)(V_s)$	61.4	53.7	m³/min
Dry total flow of stack gas, Q _{std}		<u></u>	
Conversion factor (K/mm.Hg)	0.3592	0.3592	-
$Q_{std} = (Q_a)P_s(0.3592)(1-B_{wo})$	15.0	12.7	m³/min
(T _s) +273			
Wet total flow of stack gas, Q _{stw}			
Conversion factor (K/mm.Hg)	0.3592	0.3592	-
$Q_{std} = (Q_a)P_s(0.3592)$	15.6	13.2	m³/min
(T _s) +273			


Test	1	2	Units
Date	17.04.02	17.04.02	-
Percent isokinetic, %I			
Nozzle area, A _n	143.16	143.16	mm²
Total sampling time, θ	97	99	min
$\%I = (4.6398E6)(T_s+273)(V_{mstd})$	92.0	100.6	%
$(P_s)(V_s)(A_n)(\theta)(1-B_{wo})$			
Percentage isokinetic acceptable ± 10%	Yes	Yes	-
Particulate Concentration, C			
Mass of particulate collected on filter, M _f	0.0006	0.0011	g
Mass of particulate collected in probe, M _p	0.0001	0.0001	g
Mass of total particulate collected, M _n	0.0007	0.0012	g
$C_{dry} = M_n$	0.4	0.8	mg/m ³
V _{mstd}			
$C_{\text{wet}} = M_{\text{n}}$	0.4	0.8	mg/m³
V _{mstw}			
C _{@11%oxygen} = M _n	0.4	0.8	mg/m³
V _{mstd@11%oxygen}			
Particulate emission rate, E _{g/hr}		-	
$E_{g/hr} = (C_{dry})(Q_{std})(60)$	0.4	0.6	g/hr
1000			
Cremation Details			
Cremation Date	17.04.02	17.04.02	-
Cremation Number	140263	140265	-
Mass of Deceased	Average	Average	-
Gender of Deceased	Female	Male	-
Coffin Features	Standard	Standard	

Time	ОС	O ₂	СО		ОС		СО
Time				Time		O ₂	
	mg/m³	% v/v 17.04.02	mg/m ³		mg/m³	% v/v 17.04.02	mg/m ³
12:14			1 00	10.50			1
	46	6.2	26	12:59	1.3	11.0	10.0
12:15	52	6.8	28	13:00	1.0	10.5	9.5
12:16	44	8.3	22	13:01	1.4	10.2	10.4
12:17	54	12	15	13:02	1.3	10.4	8.3
12:18	45	12	23	13:03	1.8	10.6	7.2
12:19	46	12	14	13:04	1.7	10.3	8.2
12:20	33	9.8	8.9	13:05	1.8	10.0	9.1
12:21	31	8.5	6.0	13:06	1.8	9.9	9.0
12:22	20	8.7	7.1	13:07	1.9	9.7	9.9
12:23	21	9.5	8.7	13:08	1.9	9.5	7.6
12:24	15	9.9	9.0	13:09	1.9	9.4	6.5
12:25	18	10.3	9.4	13:10	1.5	8.8	9.2
12:26	16	9.6	7.7	13:11	2.5	8.3	13
12:27	14	8.9	7.2	13:12	2.0	8.5	12
12:28	13	8.5	7.0	13:13	2.4	8.7	16
12:29	14	8.3	5.9	13:14	3.0	8.9	17
12:30	10	8.6	5.0	13:15	2.8	9.2	16
12:31	11	8.9	5.1	13:16	2.3	9.3	15
12:32	7.3	9.1	5.2	13:17	2.3	9.4	14
12:33	4.7	9.0	6.3	13:18	1.7	9.5	13
12:34	1.8	9.2	3.2	13:19	1.8	10.1	16
12:35	5.0	8.4	0.0	13:20	2.0	10.4	8.3
12:36	3.2	9.6	2.2	13:21	2.2	10.9	7.5
12:37	6.9	11.6	8.0	13:22	2.1	11.3	5.2
12:38	7.4	10.8	1.2	13:23	2.2	12.8	0.0
12:39	6.6	10.3	0.0	13:24	1.5	8.6	9.1
12:40	3.4	10.3	0.0	13:25	1.1	6.7	12
12:41	1.6	10.8	0.0				1 1
12:42		1	1	13:26	1.7	7.1	7.2
	2.3	9.9	0.0	13:27	1.4	7.0	7.1
12:43	1.3	9.7	0.0	13:28	1.0	7.2	6.3
12:44	0.6	9.9	0.0	13:29	1.3	7.3	5.5
12:45	0.5	10.2	0.0	13:30	2.1	12.1	5.6
12:46	1.2	10.3	0.0	13:31	3.9	15.9	0.0
12:47	1.2	10.9	0.0	13:32	3.9	15.4	0.0
12:48	2.1	10.5	0.0	13:33	2.7	14.2	0.0
12:49	1.8	10.0	0.0	13:34	3.1	14.5	0.0
12:50	1.8	10.7	2.4	13:35	3.8	14.7	0.0
12:51 12:52	0.2 1.6	10.9	6.2	13:36	2.9	15.1	0.0
12:52	2.2	10.5	3.6	13:37	3.8	15.7	0.0
12:53	2.2	10.4	8.3	13:38	3.6	15.9	0.0
12:54	1.5	10.9 11.0	9.9 8.8	13:39	3.7	16.4	0.0
12:56	2.0	11.0	7.6	13:40 13:41	1.0 1.0	12.4 9.2	0.0
12:57	2.5	10.4	7.6 9.4	13:42	1.7	9.2 15.0	0.0
12:58	1.4	10.4	6.0	13:42	4.3	17.5	i i
12.30	1.**	10.0	0.0	13.43	4.3	17.5	0.0

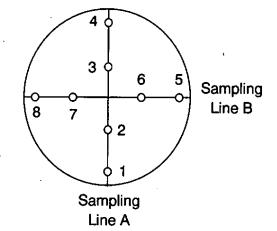
Time	ОС	O ₂	СО	Time	. oc	O ₂	CO ·
	mg/m³	% v/v	mg/m ³		mg/m³	% v/v	mg/m³
	Test 1 - 17.04.02		Test 2 - 17.04.02				
13:44	0.9	15	0.0	14:10	0.5	9.9	65
13:45	0.5	14	0.0	14:11	0.4	9.5	58
13:46	0.6	16	0.0	14:12	0.3	10.5	37
13:47	1.2	17	0.0	14:13	0.4	11.9	36
13:48	0.3	16	0.0	14:14	0.3	10.9	25
13:49	0.6	16	0.0	14:15	0.3	10.0	22
13:50	1.2	16	0.0	14:16	0.4	9.7	17
13:51	0.6	16	0.0	14:17	0.4	7.7	10
-	-	-	-	14:18	0.3	8.8	12
-	-	-	-	14:19	0.3	10.9	12
÷ .	-	-	-	14:20	0.5	8.4	7.9
÷	-	-	-	14:21	0.2	5.8	4.9
_	-	-	-	14:22	0.2	7.4	8.3
-	-	-	-	14:23	0.4	9.4	7.5
-	-	- `	-	14:24	-0.4	9.5	8.7
-	-	-	-	14:25	0.3	9.7	6.6
ļ ,	-	-	· -	14:26	0.4	9.1	7.3
-	-	_	-	14:27	0.4	8.9	6.2
	-	_	-	14:28	0.6	9.6	8.8
-	-	-	• -	14:29	0.6	10.1	6.9
-	-	-	_	14:30	0.5	10.7	4.9
-	-	-	-	14:31	0.3	11.2	0.0
-	_	-	-	14:32	0.3	11.3	3.9
-	-	-	_	14:33	0.2	11.4	10.4
-	-	-	-	14:34	0.3	10.1	10.3
-	-	-	-	14:35	0.3	9.5	9.8
-	-	-	-	14:36	0.2	10.3	. 9.3
-	-	-	-	14:37	0.2	10.7	8.5
-	-	-	-	14:38	0.3	10.5	10.7
-	-	-	-	14:39	0.3	10.3	7.0
	-	-	-	14:40	0.2	10.9	8.7
- ,	-	-	-	14:41	0.5	11	10
-	-	-	-	14:42	0.6	12	12
-	•	-	-	14:43	0.9	14	15
-	-	-	_	14:44	0.8	13	12
	- ,	-	-	14:45	0.5	10.5	7.2
-	-	-	-	14:46	0.7	11.1	10
-	-	-	-	14:47	0.3	10.8	11
-	-	-	- ,	14:48	0.4	11.8	10
-	-	-	- ,	14:49	0.5	11.6	11
-	-	-	-	14:50	0.7	11.4	12
_	-	-	-	14:51	0.5	10.8	12
_	-	-	_	14:52	0.3	10.6	14
_	_	-	-	14:53	0.2	10.5	15
Mean	7.0	10.9	6.3	14:54	0.2	10.4	14
			7.7	. 1.0-1		. ∪τ	17

Time	ОС	O ₂	СО	Time	ОС	O ₂	СО
	mg/m ³	% v/v	mg/m ³		mg/m³	% v/v	mg/m ³
		17.04.02			Test 2 -	17.04.02	1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
14:55	0.5	10.3	15	15:40	1.3	17	0.0
14:56	0.3	10.8	17	15:41	1.7	16	0.0
14:57	0.3	11.3	17	15:42	3.0	17	0.0
14:58	0.2	11.2	20	15:43	2.8	17	0.0
14:59	0.3	10. 9	21	15:44	2.6	15	0.0
15:00	0.3	10.4	22	15:45	2.5	14	0.0
15:01	0.3	10.4	21	15:46	3.4	14	0.0
15:02	0.6	10.3	22	15:47	3.3	15	0.0
15:03	0.3	10.3	19	15:48	5.3	16	0.0
15:04	0.4	9.5	24	15:49	4.5	16	0.0
15:05	0.3	8.7	27	-	-	_	<u> </u>
15:06	0.1	9.2	31	-	-	-	-
15:07	0.6	10.7	37	-	- 1	_	_
15:08	1.2	9.8	27	-	-	_	_
15:09	1.6	9.5	27	_	-	_	-
15:10	1.8	9.6	28	_	- 1	_	
15:11	1.8	9.9	37	_	- [-	-
15:12	2.0	10.2	43	_	-	_	_
15:13	2.1	11.4	47	-	_	_	_
15:14	1.7	10.3	28	-	-	_	_
15:15	1.8	9.9	30	-		_	_ [
15:16	1.5	10.0	33	_	_	_	_
15:17	1.7	10.1	30	_	_	-	_
15:18	1.2	10.0	35	-	_ [_	_
15:19	1.3	9.8	52	-	-	-	_
15:20	2.0	12	54	-	-	-	-
15:21	1.3	13	66	-	-	-	-
15:22	0.2	12	48	-	-	-	-
15:23	0.7	11	34	-	-	-	-
15:24	0.6	12	40	-	-	-	-
15:25	14.0	14	38	-	-	-	-
15:26	1.0	12	32	-	-	-	-
15:27	0.7	12	30	-	-	-	_
15:28	1.2	13	27	-	-	-	_
15:29	0.6	13	30	-	-	-	-
15:30	1.1	14	26	-	-	-	-
15:31	0.5	14	20	-	-	-	-
15:32	0.7	14	7.0	-	-	-	-
15:33	0.9	13	9.8	-	-	-	-
15:34	0.2	14	14	-	-	-	-
15:35	0.5	14	9.7	-	-	-	-
15:36	0.9	15	4.3	-	-	-	-
15:37	2.2	17	0.0	_	_	_]	-
15:38	2.8	17	0.0	_	_	_	_
15:39	1.9	17	0.0	Mean	1.1	11.5	18.2
, 5.00			5.0		***		10.2

Plant Layout

Cremator No.3	Cremator No.2	Cremator No.1
	 Walkway	
Stack	Stack	Stack

Stack Diagram


Sampling	Distance	Distance
Point	as a %	into
	of D	Stack (m)
1, 5	6.5	0.02
2, 6	25	0.10
3, 7	75	0.29
4, 8	93.5	0.36

Stack Diameter (D) =

0.38 m

Stack Area (A) =

0.11 m²

Total Particulate Matter Sampling Methodology

US EPA Method 5 requires the extraction of a particulate laden sample from the stack or duct, followed by the subsequent removal of the particulate matter by a filter medium. Concurrently, a measurement of the volume of the withdrawn sample gas is required to determine the particulate concentration. The sample is extracted by using a traversing procedure that approximately integrates the sample volume and collected particulate mass over the entire cross section of the stack or duct. During the sample traverse, the velocity distribution is also determined. This data provides the stack gas flow rate which is used with the particulate concentration to calculate the mass emission rate. Throughout the sampling period, therefore, the sample gas velocity in the probe nozzle is adjusted or re-adjusted to equal the stack gas velocity at each and every traverse point.

Laboratory Preparation

All glassware and metal components are cleaned in accordance with the clean up procedures as described later.

The required number of filter papers are heated in an oven at 105° C for a period of 2 hours and then placed in a desiccator until they can be weighed to a stable weight to within \pm 0.1 mg. The whole sampling train is assembled in a clean environment and the following checks carried out.

- 1. No obvious damage such as cracked glass, split wiring, cross threads etc.
- 2. With the impingers filled with the necessary amounts of distilled water/silica gel, a system leak check is performed.
- 3. Fluid reservoir levels for both liquid manometers are topped up to the required
- 4. All heated components and thermocouples are checked.
- 5. The umbilical cord is inspected for leaks and the wiring checked for flaws.
- 6. All the nozzle inlet diameters are measured and any distortions recorded.
- 7. Finally, the sampling train is dismantled and made ready for transport to site.

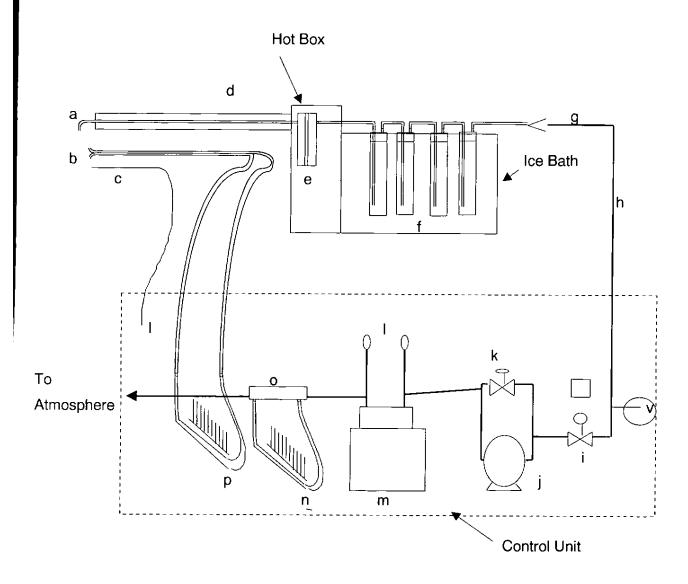
Sampling

The sampling train is unpacked and assembled as shown below. The following is then carried out.

- 1. A quick check to confirm all heated components are working correctly.
- Measurement of the stack diameter and calculation of the appropriate sampling points.
- 3. At each of the sampling points, the pitot tube pressure drop and gas temperature are recorded.

Total Particulate Matter Sampling Methodology

- Measurements of the stack pressure, gas composition and moisture content are noted and the nozzle diameter determined.
- 5. A filter of known weight is placed in it's housing unit and inserted into the heater box.
- 6. The heated probe and heater box are switched on and set to the required temperatures.
- 7. A sampling train leak check is performed.
- 8. The probe is positioned at the first sampling point.
- 9. The initial gas meter volume is recorded.
- 10. Sampling is then performed for an equal time period at each of the sampling points with all necessary data recorded throughout the test.
- 11. When sampling is complete, the final gas meter volume is recorded and a sampling train leak check is performed.
- 12. The sampling train is prepared to carry out a second test as outlined in the clean up procedure.


Clean Up Procedure

- The filter is removed and returned it to it's labelled petri dish. Any particulate matter
 deposited on the filter housing, probe lining and nozzle are collected and placed in
 the same petri dish. The filter housing, probe lining and nozzle are then rinsed with
 acetone, with the washings collected in a labelled container.
- 2. The impinger solution from the first two impingers is poured into one labelled container.

 Any condensate collected in the third impinger is then added to this container
- 3. The silica gel from the fourth impinger is emptied into a labelled container.
- The impingers are then washed with distilled water and the washings poured into a labelled container.

Sampling Equipment

Sampling Train Used: Air Testing & Support Manual Sampling Train

Key

а	Quartz Nozzle	i	Coarse Control Valve
b	S-Type Pitot Tube	j	Vacuum Pump
С	Thermocouple	k	Fine Control Valve
d	Quartz Lined Heated Probe	1	Thermocouples
е	Filter Holder	m	Dry Gas Meter
f	Impingers	n	Orifice Manometer
g	Check Valve	0	Orifice Plate
h	Umbilical Cord	р	Pitot Manometer

Organic Compounds Sampling Methodology

The Signal 3010 MINIFID Portable Heated Total Hydrocarbon Analyser uses Flame Ionisation to detect total organic carbon in a gas stream.

Checks Carried Out before Arrival On Site

The FID analyser is set up and is tested. The following are checked; the furnace and sample line temperatures, the zero and span gas calibration and the operation of the data logger.

On Site Sampling Procedure

The FID and sample line are switched on and allowed to reach operational temperature. The analyser will take 20 minutes to reach its operational temperature of 180°C. The sample line is heated to approximately 180°C to avoid VOCs condensing in the line. When the components have reached the correct operating temperature the fuel and span gas valves are opened and the FID is ignited.

The FID will take about 20 minutes before it stabilises and gives a zero ppm reading. The zero gas is fed into the FID and the zero set. The span gas is fed into the FID and the instrument adjusted to read the certified span gas value. The zero gas is fed into the FID once more to check that the reading returns to zero, if it does not, then these steps are repeated.

The probe, with a particulate filter, is then inserted into the stack, and the data logger activated.

The data logger can be programmed to log results over a 1, 5, 10 etc minute period. The results displayed and logged are the volume concentration of propane in ppm, which are converted to mg/m³ by the following calculations:

$$C_m = C_v \quad 36$$
22.4

where
$$C_m$$
 is the TOC concentration in mg/m³ (273 K; 101300 Pa) is the volume concentration of propane in ppm (by volume)

$$C_n = C_i X \left[\frac{100}{100 - \%H_2O_m} \right] X \left[\frac{21 - \% O_{ref}}{21 - \% O_m} \right]$$

where
$$C_n$$
 is the TOC concentration in mg/m³ stated at reference conditions of humidity and oxygen is the TOC concentration in mg/m³ (273 K; 101 300 Pa) at flue gas conditions of humidity and oxygen is the measured percentage by volume of water in the flue gas V_m 0 is the measured percentage by volume of oxygen in the flue gas is the percentage by volume of oxygen at the reference conditions

Carbon Monoxide Sampling Methodology

The Testo 350 flue gas analyser is a portable instrument capable of measuring oxygen, carbon dioxide, carbon monoxide, stack temperature, date and time of test. The Testo 350 has a large measuring range for process control in industrial furnaces and a high accuracy level, even in the lower measuring ranges, for limit value control. Up to 500 measurements can be stored directly on location, with online data transmission to a PC possible for long-term measurements. The mobile gas preparation unit Testo 339, which dries the sample gas, can be connected as an option for long-term measurements.

Checks Carried Out Before Arrival On Site

Condensate traps are emptied and particulate filters replaced if necessary. The analyser when switched on, carries out a self-test (approximately 60 seconds) and rinses the measuring cells with fresh air. The analyser is tested with certified bottled calibration gas. If any cells require replacing, or adjustments are required to bring the analyser within calibration, these are made and a certificate of calibration produced. The handset is cleared of data and the analyser batteries fully charged.

On-Site Sampling Procedure

The flue gas probe is connected and the analyser switched on. The analyser is allowed to perform its self-test in fresh air. The appropriate fuel type is selected. The instrument status data (instrument temperature, battery voltage and pump capacity), required for smooth operation are checked. The complete measuring system (probe, condensate trap, tubes and connections) are leak tested. The measuring variables are set and a file created to which measurements are stored. The probe is positioned into the centre of the stack and the access hole plugged. The pump is started and measurements made. During long-term measurements the electronic measuring cells need fresh air phases to regenerate. The number and duration of the required fresh air times depends on the gas concentration and sample duration.

Post-Site Procedure

The handset memory is downloaded to PC and the analyser retested with calibration gas.

Operational Range

The O_2 sensor is a self powered, diffusion limited, metal air battery fuel cell. It has a resolution of 0.1% with an accuracy of 0.1%.

The CO cell has a resolution of 1 ppm with an accuracy of +/- 20 ppm at concentrations less than 400 ppm, +/- 5% at concentrations less than 2000 ppm and +/- 10% at concentrations greater than 2000 ppm.

All sensors and electrochemical cells have filters and cross sensitivity compensation data for more accurate measurements.

Quality Assurance Checklist

Preparation:

All glassware cleaned according to the appropriate test method.	Yes
Filters are dried, desiccated and weighed to achieve stable weights.	Yes
Equipment checked for faults and calibrated if necessary.	Yes
Sampling:	
Sampling train assembled and leak check performed in accordance with the appropriate test method.	Yes
Critical temperatures (hot box, probe, condenser and gas sample) maintained according to the appropriate test method.	Yes
Isokinetic variation within method requirement of \pm 10%.	Yes
Sample recovery according to the appropriate test method.	Yes
Sample Analysis:	
Samples sent to our accredited laboratory and analysis performed according to the appropriate analytical method.	Yes
QA Procedures:	
Equipment underwent a calibration check where necessary.	Yes
Recorded information downloaded and printouts made.	Yes
Report saved electronically onto Scientifics server.	Yes
On site data sheet completed and signed off by Team Leader.	Yes
Raw data and hard copy of report filed together.	Yes

Stack Emissions Testing Team

Environmental Team Leader	Jez Anderson BSc (Hons) Physics	
Environmental Technician(s)	Mark Woodruff BSc (Hons) Environmental Studies	
Report by	Mark Woodruff Environmental Technican	
Checked and Authorised By	s	igned

TEZ ANDEYONN Print Name

Business-Manager / Team Leader Business Title

(Delete as appropriate)

Dated

Deviations from Test Methods

In this instance, testing was fully in accordance with the respective test methods.

Conclusion

The results of this monitoring exercise demonstrate that under normal operating conditions, this Plant is being operated in full compliance with all the emission concentration limits specified in PG5/2(95).

Good housekeeping and maintenance of the ducting and associated plant should be continued in order to maintain this level of Plant performance.

A regular programme of stack emissions testing in accordance with the Plant's LAPC Authorisation will be required to demonstrate continued compliance.

52 Offerton Industrial Estate, Hempshaw Lane, Stockport, SK2 5TJ.

Tel: 0161 477 3004 Fax: 0161 480 4642

Mobile: 07973 319576 (24 Hours)
Email: james.bealing@scientifics.com

Stack Emissions Testing Report

Total Particulate Matter
Hydrogen Chloride
Organic Compounds
Carbon Monoxide

Coventry City Council

Canley Crematorium

Cremator No. 2

Sampling Date(s) 16th April 2002

Report by Mark Woodruff

Job Number LAB 3561

Contents

	Page
Title Page	1
Introduction	2
Written Summary	3
Emissions Summary & Preliminary Temperature and Velocity Profile	4
Total Particulate Matter Summary	5
Hydrogen Chloride Summary	5
Organic Compounds Summary	5
Carbon Monoxide Summary	5
Equations 1 - 3	6-8
Organic Compounds & Carbon Monoxide Emissions Data	9 - 11
Stack Diagram	12
Plant Layout	12
Total Particulate Matter Sampling Methodology	13 - 14
Sampling Equipment	15
Organic Compounds Sampling Methodology	16
Combustion Gas Sampling Methodology	. 17
Quality Assurance Checklist	18
Stack Emissions Testing Team	19
Deviations From Test Methods	, 19
Conclusion	20

Introduction

Coventry City Council operate a Crematoria at Canley Crematorium which is subject to Local Air Pollution Control by Coventry County Council under the Environmental Protection Act 1990, Part 1.

Scientifics Limited were commissioned by Coventry City Council to carry out stack emissions testing to determine the releases of prescribed pollutants from the following Cremator under normal operating conditions.

Company	Coventry City Council		
Site	Canley Crematorium		
Stack .	Cremator No. 2		
Sampling Date(s)	16th April 2002		
Cremator Manufacturer	Furance Construction Ltd		
Cremator Model	Newton ·		
Cremator Serial Number	CF409		
Operating Conditions	Test 1 Test 2		
Coffin Construction	Standard Standard		
Mass of Deceased	Average Average		
Cremation Number	140256 140260		
Process	'Crematoria'		
Guidance Note	PG5/2(95)		

Any deviations from the respective test methods are noted in the conclusion.

Written Summary

Total Particulate Matter

Passed

Two particulate tests were performed, each lasting a complete cremation. The mean sampling time was 87 minutes. The mean particulate concentration was 1.2 mg/m³ at reference conditions. This value is below the emission concentration limit of 80 mg/m³ specified in PG5/2(95).

Nax 1-21

The sampling was performed in accordance with the main procedural requirements of US EPA Method 5 using a Air Testing & Support Manual Sampling Train.

Hydrogen Chloride

Passed

Two hydrogen chloride tests were performed, each lasting a complete cremation. The mean sampling time was 87 minutes. The mean hydrogen chloride concentration was 0.69 mg/m³ at reference conditions. This value is below the emission concentration limit of 200 mg/m³ specified in PG5/2(95).

18

The sampling was performed in accordance with the main procedural requirements of US EPA Method 26A using a Air Testing & Support Manual Sampling Train.

Organic Compounds

Passed

Two organic compounds tests were performed, each lasting a complete cremation. The mean sampling time was 87 minutes. The mean organic compounds concentration was 2.9 mg/m³ at reference conditions. This value is below the emission concentration limit of 20 mg/m³ specified in PG5/2(95).

Mox S. S.

The sampling was performed in accordance with the main procedural requirements of US EPA Method 25A using a heated sampling line and a Signal 3010 MINIFID portable VOC analyser with detection by FID calibrated against 11 ppm propane span gas.

Carbon Monoxide Passed

Two carbon monoxide tests were performed, each lasting a complete cremation. The mean

sampling time was 87 minutes. The mean carbon monoxide concentration was 8.9 mg/m³ at reference conditions. This value is below the emission concentration limit of 100 mg/m³

specified in PG5/2(95).

The sampling was performed using a heated sampling line with a Testo 339 gas conditioning unit and a Testo 350 flue gas analyser with detection by electrochemical cells calibrated against 99 ppm carbon monoxide span gas.

Reference conditions are 273K, 101.3kPa and 11% oxygen, dry gas.

not los

Emissions Summary

Company

Coventry City Council

Site

Canley Crematorium

Stack

Cremator No. 2

Sampling Date(s)

16th April 2002

Parameter	Units	Result	Limit	Outcome
Total Particulate Matter	mg/m ³	1.20	80	Passed
Total Particulate Matter Emission Rate	g/hr	1.3		- 1 40004
Isokinetic Variation	%	-6.9	<u> </u>	
Hydrogen Chloride	mg/m ³	0.69	200	Passed
Hydrogen Chloride Emission Rate	g/hr	0.79		-
Organic Compounds	mg/m ³	2.9	20	Passed
Organic Compounds Emission Rate	g/hr	3.2	-	-
Carbon Monoxide	mg/m³	8.9	100	Passed
Carbon Monoxide Emission Rate	g/hr	10.5		
Oxygen	% v/v	11.0	-	-
Temperature	°C	793		_
Moisture	% v/v	4.9		
Gas Velocity	m/s	11.7		
Gas Volumetric Flow Rate (Actual)	m³/hr	4761	<u> </u>	
Gas Volumetric Flow Rate (STP)	m³/hr	1152	-	<u>-</u>

All results are mean values, with pollutant concentrations expressed at reference conditions. Reference conditions are 273K, 101.3kPa and 11% oxygen, dry gas.

Preliminary Velocity and Temperature Profile

		Line A			Line B	<u> </u>
Traverse	Dynamic	Temp	Velocity	Dynamic	Temp	Velocity
Point	Pressure Pa	°C	m/s	Pressure	°C	m/s
1	31	795	10.05	Pa		
<u> </u>			10.95	35	799	11.64
2	34	796	11.46	34	798	11.47
3	33	795	11.29	35	798	11.63
4	35	, 798	11.63	36	798	11.79
5	34	797	11.46	37	797	11.94
6	33	796	11.29	35	798	11.63
7	32	796	11.12	34	799	11.47
8	31	797	10.96	34	799	11.47
9	33	798	11.30	33	799	11.31
10	34	799	<u>11</u> .47	34	799	11.47
<u>Me</u> an	33	797	11.29	35	798	11.58

Total Particulate Matter Summary

Particulate	Sampling Times	Concentration	Emission Rate	
		mg/m ³	g/hr	
Test 1	15:04 - 16:27	1.20	1.3	
Test 2	10:23 - 11:53	1.10	1.3	
Mean Particulate C	oncentration	1.20	1.3	

Reference conditions are 273K, 101.3kPa and 11% oxygen, dry gas.

Hydrogen Chloride Summary

HCI	Lab Result	Volume Sampled	Concentration	Emission Rate
	mg	m ³	mg/m³	g/hr
Test 1	1.2	1.3563	0.88	0.99
Test 2	0.78	1.5846	0.49	0.59
Mean HCl Concentration			0.69	0.79

Reference conditions are 273K, 101.3kPa and 11% oxygen, dry gas.

Organic Compounds Summary

Organic Compounds	Sampling Times	Concentration	Emission Rate
		mg/m ³	g/hr
Test 1	15:04 - 16:27	5.2	5.8
Test 2	10:23 - 11:53	0.51	0.61
Mean Organic Compounds Concentration		2.9	3.2

Reference conditions are 273K, 101.3kPa and 11% oxygen, dry gas.

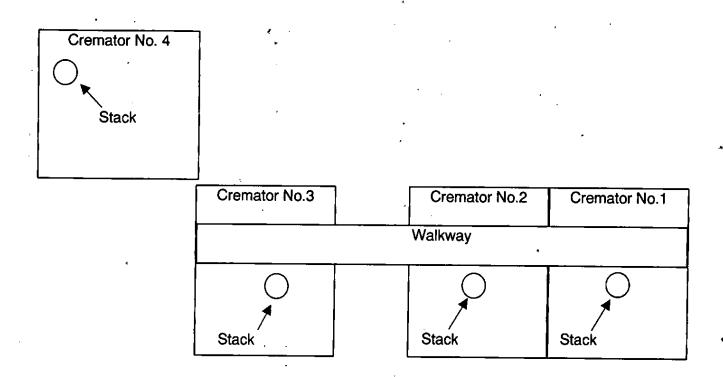
Carbon Monoxide Summary

Carbon Monoxide	Sampling Times	Concentration mg/m ³	Emission Rate g/hr	
Test 1	15:04 - 16:27	1.7	1.9	
Test 2 10:23 - 11:53		16	19	
Mean Carbon Monoxid	de Concentration	8.9	10.5	

Reference conditions are 273K, 101.3kPa and 11% oxygen, dry gas.

Test	1	2	Units
Date	16.04.02	17.04.02	-
Absolute pressure of stack gas, P _s			
Barometric pressure, P _b	754.5	754.5	mm Hg
Stack static pressure, P _{static}	5.10	5.10	mm H ₂ O
$P_s = P_b + (P_{static})$	754.9	754.9	mm Hg
13.6			
Volume of water vapour collected, V _{wstd}			
Impinger volume collected	36	54	ml
Silica gel weight increase	17	14	g
Total volume of liquid collected, V _{lc}	53	68	ml
$V_{\text{wstd}} = (0.001246)(V_{\text{lc}})$	0.0657	0.0847	m ³
Volume of gas metered, V _{mstd}			
Volume of gas sample through gas meter, V_m	1.5340	1.7136	m ³
Gas meter correction factor, Y _d	0.9787	0.9787	-
Average dry gas meter temperature, T _m	22.5	21.5	°C
Average pressure drop across orifice, ΔH	42.80	44.84	mm H ₂ O
$V_{mstd} = (0.3592)(V_m)(P_b + (\Delta H/13.6))(Y_d)$	1.3827	1.5501	m ³
T _m + 273			
Volume of gas at X% oxygen, V _{mstd@X% oxygen}	 		
% oxygen measured in gas stream, act%O ₂	11.2	10.8	%
% oxygen at which results required X%	11.0	11.0	%
% oxygen in ambient air by volume	20.9	20.9	% '
$O_{xygen@11\%} = 20.9 - act\%O_2$	0.98	1.02	
20.9 - X%			
$V_{\text{mstd}@X\%oxygen} = (V_{\text{mstd}})(O_{\text{xygen}@11\%})$	1.3563	1.5846	m³
Moisture content, B _{wo}			
$B_{wo} = V_{wstd}$	0.045	0.052	m ³
V _{mstd} + V _{wstd}			
	4.54	5.18	%
Wet volume of gas metered, V _{mstw}			
V _{mstw} = V _{mstd@X%oxygen} + V _{wstd}	1.4220	1.6694	m ³

Test	1	2	Units
Date	16.04.02	17.04.02	-
Molecular weight of dry gas stream, M _d			
CO ₂	5.5	5.8	%
O_2	11.2	10.8	%
co	0.0002	0.0015	%
Total	16.72	16.54	%
N ₂ (100 -Total)	83.28	83.46	%
$M_d = 0.44(\%CO_2) + 0.32(\%O_2) + 0.28(\%CO + \%N_2)$	29.33	29.35	g/gmol
Molecular weight of stack gas (wet), M _s			
$M_s = M_d(1 - B_{wo}) + 18(B_{wo})$	28.82	28.76	g/gmol
Velocity of stack gas, V _s			
Pitot tube velocity constant, K _p	34.97	34.97	-
Velocity pressure coefficient, C _p	0.79	0.79	-
Average of velocity heads, ΔP_{avg}	3.54	3.72	mm H₂O
Average square root of velocity heads, √∆P	1.88	1.93	√mm H₂O
Average stack gas temperature, T _s	800	787	°C
$V_s = (K_p)(C_p)(\sqrt{\Delta P})(\sqrt{T_s} + 273)$	11.55	11.78	m/s
√(Ms)(Ps)			
Actual flow of stack gas, Q _a			
Area of stack, A _s	0.11	0.11	m ²
$Q_{a} = (60)(A_{s})(V_{s})$	78.6	80.1	m³/min
Dry total flow of stack gas, Q _{std}			
Conversion factor (K/mm.Hg)	0.3592	0.3592	-
$Q_{std} = (Q_a)P_s(0.3592)(1-B_{wo})$	19.0	19.4	m³/min
(T _s) +273			
Wet total flow of stack gas, Q _{stw}			
Conversion factor (K/mm.Hg)	0.3592	0.3592	-
$Q_{std} = (Q_a)P_s(0.3592)$	19.9	20.5	m³/min
(T _s) +273			


Test	1	2	Units
Date	16.04.02	17.04.02	-
Percent isokinetic, %I			
Nozzle area, A _n	107.53	107.53	mm²
Total sampling time, θ	83	90	min
$\%1 = (4.6398E6)(T_s+273)(V_{mstd})$	92.7	93.5	%
${(P_s)(V_s)(A_n)(\theta)(1-B_{wo})}$	-		
Percentage isokinetic acceptable ± 10%	Yes	Yes	_
Particulate Concentration, C			<u> </u>
Mass of particulate collected on filter, M _f	0.0013	0.0014	g
Mass of particulate collected in probe, M _p	0.0003	0.0003	g
Mass of total particulate collected, M _n	0.0016	0.0017	g
$C_{dry} = M_n$	1.2	1.1	mg/m ³
$\overline{V_{mstd}}$			ing/iii
$C_{\text{wet}} = M_n$	1.1	1.0	mg/m³
V _{mstw}			mg/m
C _{@11%oxygen} = M _n	1.2	1.1	mg/m ³
V _{mstd@11%oxygen}			mg/m
Particulate emission rate, E _{g/hr}			
$E_{g/hr} = (C_{dry})(Q_{std})(60)$	1.3	1.3	g/hr
1000			9/'''
Cremation Details			
Cremation Date	16.04.02	17.04.02	_
Cremation Number	140256	140260	_
Mass of Deceased	Average	Average	_
Gender of Deceased	Male	Female	_
Coffin Features	Standard	Standard	_

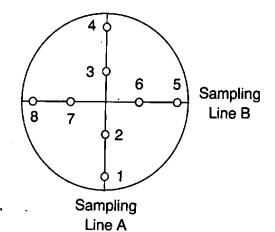
Time	OC	O ₂	СО	Time	ОС	O ₂	CO
	mg/m³	% v/v	mg/m ³		mg/m ³	% v/v	mg/m³
		16.04.02			Test 1 -	16.04.02	
15:04	69	8.5	25	15:49	0.4	11.7	0.0
15:05	72	8.4	29	15:50	0.2	11.9	0.0
15:06	43	8.6	14	15:51	0.2	12.0	0.0
15:07	39	8.8	16	15:52	0.4	12.0	0.0
15:08	25	8.6	12	15:53	0.6	12.1	0.0
15:09	15	8.7	8.1	15:54	0.6	12.5	0.0
15:10	15	8.8	4.1	15:55	0.6	12.6	0.0
15:11	14	9.2	6.3	15:56	0.6	12.4	0.0
15:12	9.2	9.1	3.1	15:57	0.4	12.8	0.0
15:13	4.4	8.9	2.1	15:58	0.6	12.4	0.0
15:14	1.8	9.6	1.1	15:59	0.3	8.4	0.0
15:15	2.3	9.5	1.1	16:00	0.4	9.0	0.0
15:16	2.6	9.4	5.4	16:01	0.3	10.3	0.0
15:17	3.0	9.3	2.1	16:02	0.8 1.4	12.6 12.5	0.0 1.5
15:18	6.5	9.6	1.1	16:03 16:04	1.4	12.5	0.0
15:19	7.5	9.4	0.0 0.0	16:04	1.4	12.4	0.0
15:20	6.5	9.6					0.0
15:21	6.6	9.5	0.0	16:06	1.7	12.9	i i
15:22	4.8	9.8	0.0	16:07	1.0	12.7	0.0
15:23	1.7	9.9	0.0	16:08	0.4	12.8	0.0
15:24	0.6	9.6	0.0	16:09	0.7	11.2	0.0
15:25	1.2	9.9	1.1	16:10	0.7	9.4	0.0
15:26	0.8	10.2	0.0	16:11	0.6	12.9	0.0
15:27	2.3	10.6	0.0	16:12	1.3	13.2	0.0
15:28	3.5	10.4	0.0	16:13	0.4	13.4	0.0
15:29	3.6	10.3	0.0	16:14	0.5	13.5	0.0
15:30	3.3	9.8	0.0	16:15	0.6	13.2	1.6
15:31	3.6	10.2	0.0	16:16	0.7	13.3	0.0
15:32	3.8	10.4	0.0	16:17	0.4	13.4	0.0
15:33	3.9	10.6	0.0	16:18	0.2	13.6	0.0
15:34	3.6	10.8	0.0	16:19	0.5	13.7	0.0
15:35	4.5	12.3	0.0	16:20	0.7	13.9	0.0
15:36	3.6	10.7	0.0	16:21	0.5	13.5	0.0
15:37	2.9	8.7	0.0	16:22	0.5	13.6	0.0
15:38	3.9	11.1	0.0	16:23	0.2	13.7	1.7
15:39	3.6	11.2	0.0	16:24	0.2	13.9	0.0
15:40	3.8	11.3	0.0	16:25	0.7	13.9	0.0
15:41	3.5	10.8	0.0	16:26	0.4	12.2	0.0
15:42	2.5	10.9	0.0	16:27	0.7	14.2	0.0
15:43	1.9	11.1	0.0	-	-	-	-
15:44	2.3	11.4	0.0	-	-	-	-
15:45	2.4	11.2	0.0	-	-	-	-
15:46	1.6	11.3	0.0	-	-	-	-
15:47	0.9	11.8	1.4	-	-	-	-
15:48	0.7	11.6	1.3		-		<u> </u>

Time	ОС	O ₂	СО	Time	ОС	O ₂	co
	mg/m ³	% v/v	mg/m ³		mg/m ³	% v/v	mg/m ³
	Test 1 -	16.04.02			Test 2 -	17.04.02	
-	-	-	-	10:23	0.3	3.3	64
-	-	-	-	10:24	0.4	6.9	78
- ·	-	-	-	10:25	0.2	7.5	60
-	-	-	-	10:26	0.4	8.2	54
-	-	-	-	10:27	0.4 •	8.5	46
-		-	-	10:28	0.5	11.2	46
-	-	-	-	10:29	0.5	13.9	53
-	-	-	-	10:30	0.3	9.6	35
-	-	-	-	10:31	0.4	8.0	33
-	-	-	-	10:32	0.4	8.4	31
-	-	-	-	10:33	0.3	9.2	32
-	-	-	-	10:34	0.3	8.6	29
-	-	-	_	10:35	0.1	7.3	26
-		-	-	10:36	0.4	8.5	25
-	-) -	-	10:37	0.3	9.2	25
-	-	-	- `	10:38	0.3	11.3	28
, -	-	-	_	10:39	0.6	12.8	34
-	-	ļ <u>-</u>	-	10:40	0.5	10.2	20
-	-	-	-	10:41	0.5	8.2	17
-	-	-	-	10:42	0.1	7.7	17
-	_	-	1 -	10:43	0.3	6.5	16
-	-	-	-	10:44	0.2	6.8	20
-	-	<u>-</u>		10:45	0.3	7.7	24
-	\ \ -	· -	-,	10:46	0.5	8.6	21
-	-]	-	- '	10:47	1.1	11.7	27
-	- 1	-	-	10:48	1.2	10.9	21
-	-	-] - [10:49	1.3	10.8	20
-] -	-	-	10:50	0.7	8.5	15
-	- [-	-	10:51	0.2	6.9	16
-	-	-		10:52	0.3	9.2	20
-	-	-	-	10:53	0.5	10.8	22
-	-	-	-]	10:54	0.2	11.1	19
-	-	-	-	10:55	0.3	11.0	20
-	-	-	-	10:56	0.4	7.0	14
-	-	-	- 1	10:57	0.2	7.4	15
-	-	• .	- 	10:58	0.4	8.6	19
-	-	•	-	10:59	0.5	10.1	26
=	1 -	-	- '	11:00	0.5	10.5	24
- ,	-	-	-	11:01	0.5	11.4	23
-	-	-	- • 🖠	11:02	0.4	8.3	17
-	-	-		11:03	0.4	7.4	22
-	-	-	-	11:04	0.2	6.9	19
-	-	-	-	11:05	0.2	5.8	12
_	-	_	- 1	11:06	0.6	12.2	13
Mean	5.2	11.2	1.7	11:07	0.6	13.1	l.
			1.7		0.0	13.1	7.9

Time	OC	O ₂	СО	Time	ОС	O ₂	CO
	mg/m³	% v/v	mg/m ³		mg/m³	% v/v	mg/m³
	Test 2 -	17.04.02		· - · - · · - · · · · · · · · · ·	Test 2 -	17.04.02	
11:08	0.7	13.5	13.4	11:53	0.6	15.5	18
11:09	0.7	13.8	8.8	-	-	-	-
11:10	0.4	12.1	8.4	-	_	-	-
11:11	0.3	7.5	5.5	-	-	-	-
11:12	0.1	8.4	7.9	-	_	-	-
11:13	0.3	9.8	7.8	-	_	_	-
11:14	0.2	10.9	7.4	-	-	_	-
11:15	0.2	13.1	0.0	_ ,	-	-	-
11:16	0.4	12.3	2.9	-	-	_	_
11:17	0.3	10.4	0.0		-	-	-
11:18	0.4	12.2	0.0	-	<u>-</u>	_	-
11:19	0.5	14.1	0.0	-	-	-	-
11:20	0.4	12.6	0.0	_	-	<u>-</u>	-
11:21	0.3	11.0	0.0	-	_	-	_
11:22	0.4	12.7	0.0	_	_	-	_ ;
11:23	0.5	14.2	0.0	_	_	_	-
11:24	0.4	8.2	0.0	_	-	-]
11:25	0.4	6.9	0.0	_ :	_	_	_
11:26	0.4	9.4	0.0	_	_	_	_
11:27	7.5	12.0	0.0	_	_	<u> </u>	_
11:28	0.5	10.3	0.0	_	_	_	_
11:29	0.5	8.6	0.0	_	_	_	_
11:30	0.6	9.1	0.0	_	_	_	_
11:31	0.6	15.1	0.0	- -	_	} _	l <u>.</u> ;
11:32	0.3	14.4	0.0	_ ,	_	_	_
11:33	0.4	13.2	0.0	_	_	_	_
11:34	0.4	13.3	0.0	_	_	_	_
11:35	0.4	13.4	0.0		[_	_	_
11:36	0.5	13.5	0.0	_	_	_	
11:37	0.5 0.5	13.5	0.0	_	_	_	<u> </u>
11:38	0.3	13.4	0.0	<u> </u>	_	_	_
11:39	0.2	13.5	0.0	_	_	_	_
11:40	0.2	14.2	0.0	_	_	_	_
11:41	1.1	16.3	0.0	_	_	_	_
11:42	0.6	15.2	0.0	_	_	_	_
11:43	0.6	11.5	0.0	_	_	_	_
11:44	0.4	13.3	0.0	_	_	_	_
11:44	0.4	14.1	0.0	_	_	_	_
11:46	0.7	12.1	0.0	_	_	_	_
11:47	0.0	11.4	22	_	_	_	_
[12.2	8.5	_	_	_	_
11:48	0.4	1		_	_	_	_
11:49	0.5	14.7	0.0	-	-		
11:50	0.6	15.5	37	-	-	-	_
11:51	0.6	15.4	72		-	-	-
11:52	0.6	15.2	26	Mean	0.5	10.8	16.2

Plant Layout

Stack Diagram


Sampling	Distance	Distance
Point	as a %	into
	of D	Stack (m)
1, 5	6.5	0.02
2, 6	25	0.10
3, 7	75	0.29
4, 8	93.5	0.36

Stack Diameter (D) =

0.38 m

Stack Area (A) =

0.11 m²

Total Particulate Matter Sampling Methodology

US EPA Method 5 requires the extraction of a particulate laden sample from the stack or duct, followed by the subsequent removal of the particulate matter by a filter medium. Concurrently, a measurement of the volume of the withdrawn sample gas is required to determine the particulate concentration. The sample is extracted by using a traversing procedure that approximately integrates the sample volume and collected particulate mass over the entire cross section of the stack or duct. During the sample traverse, the velocity distribution is also determined. This data provides the stack gas flow rate which is used with the particulate concentration to calculate the mass emission rate. Throughout the sampling period, therefore, the sample gas velocity in the probe nozzle is adjusted or re-adjusted to equal the stack gas velocity at each and every traverse point.

Laboratory Preparation

All glassware and metal components are cleaned in accordance with the clean up procedures as described later.

The required number of filter papers are heated in an oven at 105° C for a period of 2 hours and then placed in a desiccator until they can be weighed to a stable weight to within \pm 0.1 mg. The whole sampling train is assembled in a clean environment and the following checks carried out.

- 1. No obvious damage such as cracked glass, split wiring, cross threads etc.
- 2. With the impingers filled with the necessary amounts of distilled water/silica gel, a system leak check is performed.
- 3. Fluid reservoir levels for both liquid manometers are topped up to the required
- 4. All heated components and thermocouples are checked.
- 5. The umbilical cord is inspected for leaks and the wiring checked for flaws.
- 6. All the nozzle inlet diameters are measured and any distortions recorded.
- 7. Finally, the sampling train is dismantled and made ready for transport to site.

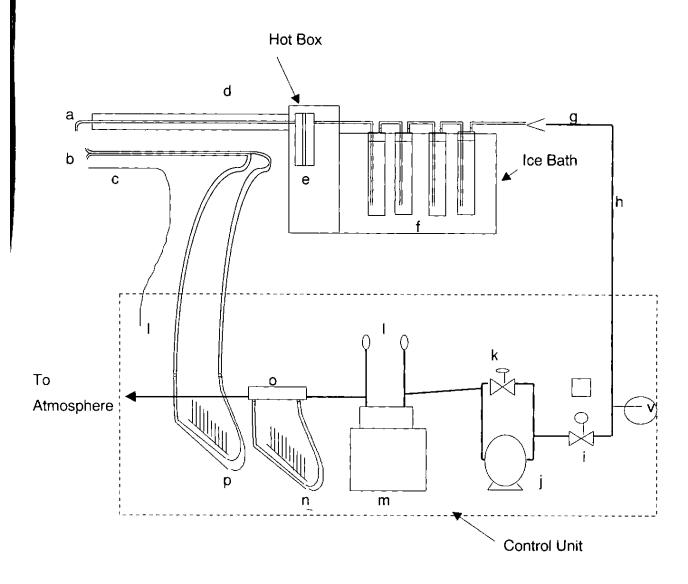
Sampling

The sampling train is unpacked and assembled as shown below. The following is then carried out.

- 1. A quick check to confirm all heated components are working correctly.
- 2. Measurement of the stack diameter and calculation of the appropriate sampling points.
- 3. At each of the sampling points, the pitot tube pressure drop and gas temperature are recorded.

Total Particulate Matter Sampling Methodology

- 4. Measurements of the stack pressure, gas composition and moisture content are noted and the nozzle diameter determined.
- 5. A filter of known weight is placed in it's housing unit and inserted into the heater box.
- 6. The heated probe and heater box are switched on and set to the required temperatures.
- 7. A sampling train leak check is performed.
- 8. The probe is positioned at the first sampling point.
- 9. The initial gas meter volume is recorded.
- 10. Sampling is then performed for an equal time period at each of the sampling points with all necessary data recorded throughout the test.
- 11. When sampling is complete, the final gas meter volume is recorded and a sampling train leak check is performed.
- 12. The sampling train is prepared to carry out a second test as outlined in the clean up procedure.


Clean Up Procedure

- 1. The filter is removed and returned it to it's labelled petri dish. Any particulate matter deposited on the filter housing, probe lining and nozzle are collected and placed in the same petri dish. The filter housing, probe lining and nozzle are then rinsed with acetone, with the washings collected in a labelled container.
- 2. The impinger solution from the first two impingers is poured into one labelled container.

 Any condensate collected in the third impinger is then added to this container
- 3. The silica gel from the fourth impinger is emptied into a labelled container.
- 4. The impingers are then washed with distilled water and the washings poured into a labelled container.

Sampling Equipment

Sampling Train Used: Air Testing & Support Manual Sampling Train

Key

а	Quartz Nozzle	i	Coarse Control Valve
b	S-Type Pitot Tube	j	Vacuum Pump
С	Thermocouple	k	Fine Control Valve
d	Quartz Lined Heated Probe	1	Thermocouples
е	Filter Holder	m	Dry Gas Meter
f	Impingers	n	Orifice Manometer
g	Check Valve	0	Orifice Plate
h	Umbilical Cord	р	Pitot Manometer

Organic Compounds Sampling Methodology

The Signal 3010 MINIFID Portable Heated Total Hydrocarbon Analyser uses Flame Ionisation to detect total organic carbon in a gas stream.

Checks Carried Out before Arrival On Site

The FID analyser is set up and is tested. The following are checked; the furnace and sample line temperatures, the zero and span gas calibration and the operation of the data logger.

On Site Sampling Procedure

The FID and sample line are switched on and allowed to reach operational temperature. The analyser will take 20 minutes to reach its operational temperature of 180°C. The sample line is heated to approximately 180°C to avoid VOCs condensing in the line. When the components have reached the correct operating temperature the fuel and span gas valves are opened and the FID is ignited.

The FID will take about 20 minutes before it stabilises and gives a zero ppm reading. The zero gas is fed into the FID and the zero set. The span gas is fed into the FID and the instrument adjusted to read the certified span gas value. The zero gas is fed into the FID once more to check that the reading returns to zero, if it does not, then these steps are repeated.

The probe, with a particulate filter, is then inserted into the stack, and the data logger activated.

The data logger can be programmed to log results over a 1, 5, 10 etc minute period. The results displayed and logged are the volume concentration of propane in ppm, which are converted to mg/m³ by the following calculations:

$$C_{m} = C_{v} \quad 36$$

where
$$C_m$$
 is the TOC concentration in mg/m³ (273 K; 101300 Pa) is the volume concentration of propane in ppm (by volume)

$$C_n = C_i X \left[\frac{100}{100 - \%H_2O_m} \right] X \left[\frac{21 - \% O_{ref}}{21 - \% O_m} \right]$$

where
$$C_n$$
 is the TOC concentration in mg/m³ stated at reference conditions of humidity and oxygen is the TOC concentration in mg/m³ (273 K; 101 300 Pa) at flue gas conditions of humidity and oxygen is the measured percentage by volume of water in the flue gas % O_m is the measured percentage by volume of oxygen in the flue gas is the percentage by volume of oxygen at the reference conditions

Carbon Monoxide Sampling Methodology

The Testo 350 flue gas analyser is a portable instrument capable of measuring oxygen, carbon dioxide, carbon monoxide, stack temperature, date and time of test. The Testo 350 has a large measuring range for process control in industrial furnaces and a high accuracy level, even in the lower measuring ranges, for limit value control. Up to 500 measurements can be stored directly on location, with online data transmission to a PC possible for long-term measurements. The mobile gas preparation unit Testo 339, which dries the sample gas, can be connected as an option for long-term measurements.

Checks Carried Out Before Arrival On Site

Condensate traps are emptied and particulate filters replaced if necessary. The analyser when switched on, carries out a self-test (approximately 60 seconds) and rinses the measuring cells with fresh air. The analyser is tested with certified bottled calibration gas. If any cells require replacing, or adjustments are required to bring the analyser within calibration, these are made and a certificate of calibration produced. The handset is cleared of data and the analyser batteries fully charged.

On-Site Sampling Procedure

The flue gas probe is connected and the analyser switched on. The analyser is allowed to perform its self-test in fresh air. The appropriate fuel type is selected. The instrument status data (instrument temperature, battery voltage and pump capacity), required for smooth operation are checked. The complete measuring system (probe, condensate trap, tubes and connections) are leak tested. The measuring variables are set and a file created to which measurements are stored. The probe is positioned into the centre of the stack and the access hole plugged. The pump is started and measurements made. During long-term measurements the electronic measuring cells need fresh air phases to regenerate. The number and duration of the required fresh air times depends on the gas concentration and sample duration.

Post-Site Procedure

The handset memory is downloaded to PC and the analyser retested with calibration gas.

Operational Range

The O_2 sensor is a self powered, diffusion limited, metal air battery fuel cell. It has a resolution of 0.1% with an accuracy of 0.1%.

The CO cell has a resolution of 1 ppm with an accuracy of +/-20 ppm at concentrations less than 400 ppm, +/-5% at concentrations less than 2000 ppm and +/-10% at concentrations greater than 2000 ppm.

All sensors and electrochemical cells have filters and cross sensitivity compensation data for more accurate measurements.

Quality Assurance Checklist

Preparation:

All glassware cleaned according to the appropriate test method.	Yes
Filters are dried, desiccated and weighed to achieve stable weights.	Yes
Equipment checked for faults and calibrated if necessary.	Yes
Sampling:	
Sampling train assembled and leak check performed in accordance with the appropriate test method.	Yes
Critical temperatures (hot box, probe, condenser and gas sample) maintained according to the appropriate test method.	Yes
Isokinetic variation within method requirement of \pm 10%.	Yes
Sample recovery according to the appropriate test method.	Yes
Sample Analysis:	
Samples sent to our accredited laboratory and analysis performed according to the appropriate analytical method.	Yes
QA Procedures:	
Equipment underwent a calibration check where necessary.	Yes
Recorded information downloaded and printouts made.	Yes
Report saved electronically onto Scientifics server.	Yes
On site data sheet completed and signed off by Team Leader.	Yes
Raw data and hard copy of report filed together.	Yes

Stack Emissions Testing Team

BSc (Hons) Physics

Environmental Technician(s) Mark Woodruff

BSc (Hons) Environmental Studies

Report by

Mark Woodruff

Environmental Technican

Checked and Authorised By

___Signed

JEZ ANDERZHOU Print Name

Business Title Business Title

(Delete as appropriate)

Deviations from Test Methods

In this instance, testing was fully in accordance with the respective test methods.

Conclusion

The results of this monitoring exercise demonstrate that under normal operating conditions, this Plant is being operated in full compliance with all the emission concentration limits specified in PG5/2(95).

Good housekeeping and maintenance of the ducting and associated plant should be continued in order to maintain this level of Plant performance.

A regular programme of stack emissions testing in accordance with the Plant's LAPC Authorisation will be required to demonstrate continued compliance.

52 Offerton Industrial Estate, Hempshaw Lane, Stockport, SK2 5TJ.

Tel: 0161 477 3004 Fax: 0161 480 4642

Mobile: 07973 319576 (24 Hours) Email: james.bealing@scientifics.com

Stack Emissions Testing Report

Total Particulate Matter
Hydrogen Chloride
Organic Compounds
Carbon Monoxide

Coventry City Council

Canley Crematorium

Cremator No. 3

Sampling Date(s)

16th April 2002

Report by

Jez Anderson

Job Number

LAB 3561

Contents

	Page
Title Page	1
Introduction	2
Written Summary	3
Emissions Summary & Preliminary Temperature and Velocity Profile	4
Total Particulate Matter Summary	5
Hydrogen Chloride Summary	. 5
Organic Compounds Summary	5
Carbon Monoxide Summary	5
Equations 1 - 3	6 - 8
Organic Compounds & Carbon Monoxide Emissions Data	9 - 11
Stack Diagram	12
Plant Layout	12
Total Particulate Matter Sampling Methodology	13 - 14
Sampling Equipment	15
Organic Compounds Sampling Methodology	16
Combustion Gas Sampling Methodology	17
Quality Assurance Checklist	18
Stack Emissions Testing Team	19
Deviations From Test Methods	19
Conclusion	20

Introduction

Coventry City Council operate a Crematoria at Canley Crematorium which is subject to Local Air Pollution Control by Coventry Council under the Environmental Protection Act 1990, Part 1.

Scientifics Limited were commissioned by Coventry City Council to carry out stack emissions testing to determine the releases of prescribed pollutants from the following Cremator under normal operating conditions.

Company	Coventry City Council		
Site	Canley Crematorium		
Stack	Cremator No. 3		
Sampling Date(s)	16th April 2002		
Cremator Manufacturer	Furance Construction Ltd		
Cremator Model	Newton		
Cremator Serial Number	CF 408		
Operating Conditions	Test 1 Test 2		
Coffin Construction	Standard Standard		
Mass of Deceased	Average Average		
Cremation Number	140249 140253		
Process	'Crematoria'		
Guidance Note	PG5/2(95)		

Any deviations from the respective test methods are noted in the conclusion.

Written Summary

Total Particulate Matter

Passed

Two particulate tests were performed, each lasting a complete cremation. The mean sampling time was 93 minutes. The mean particulate concentration was 52 mg/m³ at reference conditions. This value is below the emission concentration limit of 80 mg/m³ specified in PG5/2(95).

mot su

The sampling was performed in accordance with the main procedural requirements of US EPA Method 5 using a Air Testing & Support Manual Sampling Train.

Hydrogen Chloride Passed

Two hydrogen chloride tests were performed, each lasting a complete cremation. The mean sampling time was 93 minutes. The mean hydrogen chloride concentration was 32 mg/m³ at reference conditions. This value is below the emission concentration limit of 200 mg/m³ specified in PG5/2(95).

not 3x

The sampling was performed in accordance with the main procedural requirements of US EPA Method 26A using a Air Testing & Support Manual Sampling Train.

Organic Compounds Passed

Two organic compounds tests were performed, each lasting a complete cremation. The mean sampling time was 93 minutes. The mean organic compounds concentration was 0.79 mg/m³ at reference conditions. This value is below the emission concentration limit of 20 mg/m³ specified in PG5/2(95).

evet o.42

The sampling was performed in accordance with the main procedural requirements of US EPA Method 25A using a heated sampling line and a Signal 3010 MINIFID portable VOC analyser with detection by FID calibrated against 11 ppm propane span gas.

Carbon Monoxide Passed

Two carbon monoxide tests were performed, each lasting a complete cremation. The mean sampling time was 93 minutes. The mean carbon monoxide concentration was 3.2 mg/m³ at reference conditions. This value is below the emission concentration limit of 100 mg/m³ specified in PG5/2(95).

net 3.00

The sampling was performed using a heated sampling line with a Testo 339 gas conditioning unit and a Testo 350 flue gas analyser with detection by electrochemical cells calibrated against 99 ppm carbon monoxide span gas.

Reference conditions are 273K, 101.3kPa and 11% oxygen, dry gas.

Emissions Summary

Company

Coventry City Council

Site

Canley Crematorium

Stack

Cremator No. 3

Sampling Date(s)

16th April 2002

Parameter	Units	Result	Limit	Outcome
Total Particulate Matter	mg/m³	52	80	Passed
Total Particulate Matter Emission Rate	g/hr	25	-	-
Isokinetic Variation	%	-7.4	-	
Hydrogen Chloride	mg/m ³	32	200	Passed
Hydrogen Chloride Emission Rate	g/hr	15		-
Organic Compounds	mg/m ³	0.79	20	Passed
Organic Compounds Emission Rate	g/hr	0.38	-	-
Carbon Monoxide	mg/m ³	3.2	100	Passed
Carbon Monoxide Emission Rate	g/hr	1.6	-	
Oxygen	% v/v	13.9	-	-
Temperature	°C	842	-	-
Moisture	% v/v	9.3	-	-
Gas Velocity	m/s	7.7	-	7
Gas Volumetric Flow Rate (Actual)	m³/hr	3155		-
Gas Volumetric Flow Rate (STP)	m³/hr	. 689	-	-

All results are mean values, with pollutant concentrations expressed at reference conditions. Reference conditions are 273K, 101.3kPa and 11% oxygen, dry gas.

Preliminary Velocity and Temperature Profile

		Line A			Line B	
Traverse	Dynamic	Temp	Velocity	Dynamic	Temp	Velocity
Point	Pressure	°C	m/s	Pressure	°C	m/s
	Pa			Pa		•
1	12	776	6.73	15	779	7.54
2	14	776	7.27	16	780	7.79
3	13	778	7.02	14	781	7.29
4	15	777	7.53	13	781	7.03
5	12	779	6.74	15	780	7.54
6	16	778	7.78	12	782	6.75
7	13	779	7.02	15	782	7.55
8	14	780	7.29	16	782	7.80
9	15	780	7.54	14	781	7.29
10	16	780	7.79	15	783	7.55
Mean	14	778	7.27	. 14	781	7.41

Total Particulate Matter Summary

Particulate	Sampling Times	Concentration	Emission Rate
		mg/m ³	g/hr
Test 1	11:06 - 12:46	45	26
Test 2	13:08 - 14:33	59	24
Mean Particulate Co	oncentration	52	25

Reference conditions are 273K, 101.3kPa and 11% oxygen, dry gas.

Hydrogen Chloride Summary

HCI	Lab Result	Volume Sampled	Concentration	Emission Rate
	mg	m ³	mg/m ³	g/hr
Test 1	31	1.2081	26	15
Test 2	26	0.7049	37	15
Mean HC	l Concentration		32	15

Reference conditions are 273K, 101.3kPa and 11% oxygen, dry gas.

Organic Compounds Summary

Organic Compounds	Sampling Times	Concentration	Emission Rate
		mg/m³	g/hr
Test 1	11:06 - 12:46	0.75	0.43
Test 2	13:08 - 14:33	0.82	0.33
Mean Organic Compou	nds Concentration	0.79	0.38

Reference conditions are 273K, 101.3kPa and 11% oxygen, dry gas.

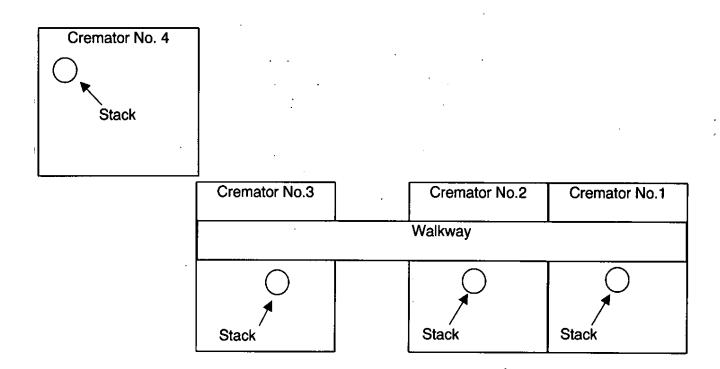
Carbon Monoxide Summary

Carbon Monoxide	Sampling Times	Concentration mg/m ³	Emission Rate g/hr
Test 1	11:06 - 12:46	3.8	2.2
Test 2	13:08 - 14:33	2.5	0.99
Mean Carbon Monoxid	e Concentration	3.2	1.6

Reference conditions are 273K, 101.3kPa and 11% oxygen, dry gas.

Test	1	2	Units
Date	16.04.02	16.04.02	-
Absolute pressure of stack gas, P _s			
Barometric pressure, P _b	754:5	754.5	mm Hg
Stack static pressure, P _{static}	5.10	5.10	mm H ₂ O
$P_{s} = P_{b} + (P_{static})$	754.9	754.9	mm Hg
13.6			_
Volume of water vapour collected, V _{wstd}			
Impinger volume collected	117	70	ml
Silica gel weight increase	35	6	g
Total volume of liquid collected, V _{Ic}	152	76	ml
$V_{\text{wstd}} = (0.001246)(V_{\text{lc}})$	0.1885	0.0947	m ³
Volume of gas metered, V _{mstd}			
Volume of gas sample through gas meter, V_m	1.8292	1.1500	m ³
Gas meter correction factor, Y _d	0.9787	0.9787	-
Average dry gas meter temperature, T _m	19.5	21.5	°C
Average pressure drop across orifice, ΔH	46.67	21.96	mm H ₂ O
$V_{mstd} = (0.3592)(V_m)(P_b + (\Delta H/13.6))(Y_d)$	1.6663	1.0380	m³
T _m + 273			
Volume of gas at X% oxygen, V _{mstd@X% oxygen}			-
% oxygen measured in gas stream, act%O₂	13.7	14.2	%
% oxygen at which results required X%	11.0	11.0	%
% oxygen in ambient air by volume	20.9	20.9	%
$O_{xygen@11\%} = 20.9 - act\%O_2$	0.73	0.68	-
20.9 - X%			
$V_{mstd@X\%oxygen} = (V_{mstd})(O_{xygen@11\%})$	1.2081	0.7049	m³
Moisture content, B _{wo}			
$B_{wo} = V_{wstd}$	0.102	0.084	m³
V _{mstd} + V _{wstd}			
	10.16	8.36	%
Wet volume of gas metered, V _{mstw}			
V _{mstw} = V _{mstd@X%oxygen} + V _{wstd}	1.3966	0.7996	m ³

Test	1	2	Units
Date	16.04.02	16.04.02	
Molecular weight of dry gas stream, M _d			
CO ₂	4.1	3.8	%
O ₂	13.7	14.2	%
co .	0.0003	0.0002	%
Total	17.81	18.01	%
N ₂ (100 -Total)	82.19	81.99	%
$M_d = 0.44(\%CO_2) + 0.32(\%O_2) + 0.28(\%CO + \%N_2)$	29.20	29.18	g/gmol
Molecular weight of stack gas (wet), M _s		-	
$M_s = M_d(1 - B_{wo}) + 18(B_{wo})$	28.06	28.24	g/gmol
Velocity of stack gas, V _s			
Pitot tube velocity constant, K _p	34.97	34.97	-
Velocity pressure coefficient, C _p	0.79	0.79	-
Average of velocity heads, ΔP_{avg}	2.08	0.98	mm H ₂ O
Average square root of velocity heads, √∆P	1.44	0.99	√mm H₂O
Average stack gas temperature, T _s	900	783	°C
$V_s = (K_p)(C_p)(\sqrt{\Delta P})(\sqrt{T_s} + 273)$	9.38	6.08	m/s
$\sqrt{(Ms)(Ps)}$			
Actual flow of stack gas, Q _a			
Area of stack, A _s	0.11	0.11	m^2
$Q_a = (60)(A_s)(V_s)$	63.8	41.4	m³/min
Dry total flow of stack gas, Q _{std}			
Conversion factor (K/mm.Hg)	0.3592	0.3592	-
$Q_{std} = (Q_a)P_s(0.3592)(1-B_{wo})$	13.3	9.7	m³/min
(T _s) +273			
Wet total flow of stack gas, Q _{stw}			
Conversion factor (K/mm.Hg)	0.3592	0.3592	-
$Q_{std} = (Q_a)P_s(0.3592)$	14.7	10.6	m³/min
(T _s) +273			


Test	1	2	Units
Date	16.04.02	16.04.02	•
Percent isokinetic, %I		Ì	· · · · · · · · · · · · · · · · · · ·
Nozzle area, A _n	153.96	153.96	mm²
Total sampling time, θ	100	85	min
$\%I = (4.6398E6)(T_s+273)(V_{mstd})$	92.6	92.5	%
${(P_s)(V_s)(A_n)(\theta)(1-B_{wo})}$:		
Percentage isokinetic acceptable ± 10%	Yes	Yes	-
Particulate Concentration, C		•	
Mass of particulate collected on filter, M _f	0.0542	0.0417	g
Mass of particulate collected in probe, M _p	0.0003	0.0002	g
Mass of total particulate collected, M _n	0.0545	0.0419	g
$C_{dry} = M_n$	32.7	40.4	mg/m³
V _{mstd}			0
$C_{\text{wet}} = M_{\text{n}}$	39.0	52.4	mg/m³
V _{mstw}			
C _{@11%oxygen} = M _n	45.1	59.4	mg/m³
V _{mstd@11%oxygen}			
Particulate emission rate, E _{g/hr}			
$E_{g/hr} = (C_{dry})(Q_{std})(60)$	26.0	23.6	g/hr
1000			,
Cremation Details			
Cremation Date	16.04.02	16.04.02	-
Cremation Number	140249	140253	-
Mass of Deceased	Average	Average	-
Gender of Deceased	Female	Female	-
Coffin Features	Standard	Standard	-

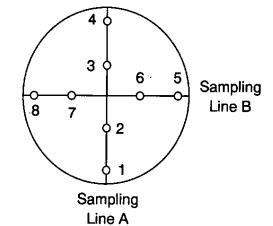
Time	ОС	O ₂	СО	Time	ОС	O ₂	СО
	mg/m ³	% v/v	mg/m ³	, ,,,,,	mg/m ³	% v/v	mg/m ³
	Test 1 -	16.04.02	<u> </u>		Test 1 -	16.04.02	
11:06	2.0	10.3	17.5	11:51	0.3	15.2	0.0
11:07	1.5	10.5	15.5	11:52	1.0	15.3	0.0
11:08	1.1	10.8	17.1	11:53	0.6	15.3	0.0
11:09	0.9	11.2	16.6	11:54	1.0	15.5	0.0
11:10	1.3	11.3	15.4	11:55	0.6	12.6	0.0
11:11	0.5	11.2	14.0	11:56	0.2	11.1	0.0
11:12	0.5	11.1	15.2	11:57	0.5	13.4	0.0
11:13	0.4	11.3	15.5	11:58	0.4	16.2	0.0
11:14	0.2	11.4	13.1	11:59	0.3	15.0	0.0
11:15	0.7	11.3	11.6	12:00	0.2	13.6	0.0
11:16	0.4	11.3	11.6	12:01	0.6	15.2	0.0
11:17 11:18	0.7	10.5	9.5	12:02	1.2	16.6	0.0
11:18	1.3 1.5	10.1	12.6	12:03	0.9	15.3	0.0
11:20	2.2	10.4 10.6	11.8 9.6	12:04 12:05	0.5	13.9	0.0
11:21	1.9	10.8	8.6	12:05	0.5	14.2 14.7	0.0
11:22	2.1	10.0	13.6	12:07	0.8	15.3	0.0
11:23	1.9	10.6	14.4	12:08	1.8	18.0	0.0
11:24	1.0	10.3	21.0	12:09	0.8	16.6	0.0
11:25	0.9	10.5	17.8	12:10	0.8	11.6	
11:26	0.5	10.3	17.8	12:11	0.4		0.0
11:27	0.3	10.8	1]		12.4	0.0
11:28	1	1	16.1	12:12	0.8	14.4	0.0
	0.5	11.2	20.4	12:13	0.3	14.5	0.0
11:29	0.4	11.1	17.7	12:14	0.3	14.6	0.0
11:30	0.4	11.0	15.0	12:15	0.6	14.9	0.0
11:31	0.4	11.2	7.7	12:16	0.9	15.2	0.0
11:32	0.2	11.3	6.5	12:17	0.9	15.3	0.0
11:33	0.2	11.8	0.0	12:18	1.0	15.4	0.0
11:34	0.4	12.4	0.0	12:19	0.6	15.2	0.0
11:35	0.7	12.8	0.0	12:20	0.7	15.5	0.0
11:36	0.7	13.0	0.0	12:21	0.6	15.2	0.0
11:37	0.7	13.2	0.0	12:22	0.3	15.3	0.0
11:38	0.7	13.4	0.0	12:23	0.3	15.4	0.0
11:39	0.5	13.8	0.0	12:24	0.7	15.5	0.0
11:40	1.0	14.1	0.0	12:25	0.6	15.2	0.0
11:41 11:42	0.8	14.5 14.6	0.0	12:26	0.3	15.3	0.0
11:42	1.1	14.6 14.9	0.0 0.0	12:27 12:28	0.3 0.6	15.4 15.2	0.0 0.0
11:44	0.3	15.1	0.0	12:29	0.6	15.2	0.0
11:45	0.5	14.0	0.0	12:29	0.8	15.2	0.0
11:46	0.5	13.5	0.0	12:31	0.3	15.1	0.0
11:47	0.5	14.0	0.0	12:32	0.9	15.3	0.0
11:48	0.6	14.9	0.0	12:33	0.9	15.2	0.0
11:49	0.3	15.0	0.0	12:34	0.6	15.3	0.0
11:50	0.3	15.0	0.0	12:35	0.3	15.4	0.0

Time	ОС	O ₂	CO	Time	OC .	O ₂	CO
	mg/m³	% v/v	mg/m³		mg/m ³	% v/v	mg/m³
		16.04.02	-		Test 2 -	16.04.02	
12:36	0.7	15.5	0.0	13:08	0.3	10.5	27.4
12:37	0.7	15.5	0.0	13:09	0.5	10.6	19.2
12:38	1.0	15.5	0.0	13:10	0.5	10.4	24.8
12:39	1.0	15.5	0.0	13:11	0.3	10.8	22.1
12:40	1.3	15.6	0.0	13:12	0.3	10.7	23.1
12:41	0.7	15.5	0.0	13:13	0.3	10.6	18.0
12:42	0.7	15.5	0.0	13:14	0.2	10.9	14.9
12:43	1.3	15.5	0.0	13:15	0.2	11.2	16.6
12:44	1.3	15.6	0.0	13:16	0.2	11.1	8.8
12:45	0.7	15.6	0.0	13:17	0.5	11.2	6.4
12:46	1.3	15.5	0.0	.13:18	0.5	11.1	5.1
-	-	-		13:19	0.7	11.3	10.3
-	- '	-	-	13:20	0.7	11.4	7.8
-	-	-	-	13:21	0.4	11.2	5.1
-	-	-	-	13:22	0.4	11.5	2.6
-	-	-	-	13:23	0.5	11.3	1.3
-	-	-	-	13:24	0.2	11.2	1.3
-	_	- •	-	13:25	0.2	12.4	0.0
-	-	-	-	13:26	0.4	12.3	0.0
-	-	- ·	-	13:27	0.8	11.7	0.0
-	_	-	-	13:28	0.6	11.8	0.0
_	-	_	- '	13:29	0.4	12.1	0.0
-	-	_	-	13:30	0.5	13.4	0.0
-	-	-	-	13:31	0.7	13.5	0.0
-	-	-	-	13:32	0.6	12.7	0.0
-	-	-	-	13:33	0.7	13.6	0.0
-	-	-	-	13:34	0.7	13.4	0.0
-	-		-	13:35	0.5	13.8	0.0
-	-	-	-	13:36	1.1	14.6	0.0
<u>.</u>	-	-	-	13:37	0.3	14.7	0.0
- 1	_	-	-	13:38	0.8	14.5	0.0
-	-	-	-	13:39	.0.6	14.8	0.0
-	-	-	-	13:40	0.6	14.9	0.0
-	-	-	-	13:41	0.6	15.2	0.0
-	-	-	-	13:42	0.9	15.2	0.0
-	-	-	-	13:43	1.2	15.1	0.0
-	-	-	-	13:44	1.6	15.6	0.0
-	-	-	- '	13:45	1.3	15.4	0.0
-	-	-	-	13:46	0.6	15.2	0.0
-		-	-	13:47	0.3	15.1	0.0
-	-	- •	-	13:48	0.9	15.3	0.0
-	-	-		13:49	0.6	15.2	0.0
-	-	-	<u></u>	13:50	0.3	15.4	0.0
-	-	-		13:51	0.3	15.2	0.0
Mean	0.7	13.7	3.8	13:52	0.3	15.2	0.0
	L <u> </u>						

mg/m³ % v/v mg/m³ mg/m³ % v/v mg/m	Time	ОС	O ₂	СО	Time	ОС	O ₂	СО
Test 2 - 16.04.02	1	mg/m³	% v/v	mg/m ³		mg/m ³	% v/v	mg/m ³
13:53					<u> </u>	<u> </u>		
13:54	13:53			0.0	_	_		-
13:55		0.6	15.2	0.0	-	_	_	-
13:56	1	0.9	15.3	0.0	_	-	-	_
13:57	1				-	_	-	_
13:58	1	0.9	1		-	-	-	-
13:59	1	0.6	15.2	0.0	-	_	_	-
14:00 0.6 15.4 0.0 - <t< td=""><td>F I</td><td>0.6</td><td>15.3</td><td>0.0</td><td>-</td><td>-</td><td>_</td><td>-</td></t<>	F I	0.6	15.3	0.0	-	-	_	-
14:02 1.2 15.2 0.0 - <t< td=""><td>14:00</td><td>0.6</td><td>15.4</td><td>0.0</td><td>-</td><td>_</td><td>-</td><td>_</td></t<>	14:00	0.6	15.4	0.0	-	_	-	_
14:03 0.6 15.3 0.0 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -	14:01	0.6	15.5	0.0	-	_	_	-
14:04 0.9 15.4 0.0 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -	14:02	1.2	15.2	0.0	-	-	-	-
14:05 1.0 15.5 0.0 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -	14:03	0.6	15.3	0.0	_	-	-	-
14:06 0.6 15.4 0.0 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -	14:04	0.9	15.4	0.0	-	-	-	-
14:07 0.3 15.3 0.0 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -	14:05	1.0	15.5	0.0	-	-	-	-
14:08 0.9 15.4 0.0 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -	14:06	0.6	15.4	0.0	-	-	-	-
14:09 1.3 15.5 0.0 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -	14:07	0.3	15.3	0.0	-	-	-	_
14:10 1.3 15.5 0.0 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -	14:08	0.9	15.4	0.0	-	-	-	-
14:11 0.7 15.6 0.0 - <t< td=""><td>14:09</td><td>1.3</td><td>15.5</td><td>0.0</td><td>-</td><td>-</td><td>-</td><td>-</td></t<>	14:09	1.3	15.5	0.0	-	-	-	-
14:11 0.7 15.6 0.0 - <t< td=""><td>14:10</td><td>1.3</td><td>15.5</td><td>0.0</td><td>_</td><td>-</td><td>-</td><td>-</td></t<>	14:10	1.3	15.5	0.0	_	-	-	-
14:12 0.3 15.6 0.0 - <t< td=""><td></td><td></td><td></td><td></td><td>-</td><td>- </td><td></td><td>-</td></t<>					-	-		-
14:13 0.6 15.5 0.0 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -	I I				_	-	_	-
14:14 0.3 15.6 0.0 - <t< td=""><td>1</td><td></td><td></td><td></td><td>_</td><td>- </td><td>-</td><td>-</td></t<>	1				_	-	-	-
14:15 1.6 15.6 0.0 - <t< td=""><td>I I</td><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td><td>-</td></t<>	I I				-	-	-	-
14:16 0.7 15.7 0.0 - <t< td=""><td>I I</td><td></td><td>1</td><td></td><td>-</td><td>- </td><td>-</td><td>-</td></t<>	I I		1		-	-	-	-
14:17 1.0 15.6 0.0 - <t< td=""><td>I I</td><td></td><td></td><td>0.0</td><td>-</td><td>- </td><td>_</td><td>-</td></t<>	I I			0.0	-	-	_	-
14:18 0.6 15.4 0.0 - <t< td=""><td></td><td></td><td>15.6</td><td>0.0</td><td>-</td><td>- i</td><td>-</td><td>-</td></t<>			15.6	0.0	-	- i	-	-
14:20 2.0 15.7 0.0 - <t< td=""><td></td><td>0.6</td><td>15.4</td><td>0.0</td><td>-</td><td>- </td><td>-</td><td>-</td></t<>		0.6	15.4	0.0	-	-	-	-
14:21 1.4 15.8 0.0 - <t< td=""><td>14:19</td><td>2.0</td><td>15.8</td><td>0.0</td><td>-</td><td>- </td><td>-</td><td>-</td></t<>	14:19	2.0	15.8	0.0	-	-	-	-
14:22 2.3 15.6 0.0 - <t< td=""><td>14:20</td><td>2.0</td><td>15.7</td><td>0.0</td><td>-</td><td>- </td><td>-</td><td>-</td></t<>	14:20	2.0	15.7	0.0	-	-	-	-
14:23 2.2 15.5 0.0 - <t< td=""><td>14:21</td><td>1.4</td><td>15.8</td><td>0.0</td><td>-</td><td>-</td><td>-</td><td>-</td></t<>	14:21	1.4	15.8	0.0	-	-	-	-
14:24 1.3 15.6 0.0 - <t< td=""><td>14:22</td><td>2.3</td><td>15.6</td><td>0.0</td><td>-</td><td>-</td><td>-</td><td>-</td></t<>	14:22	2.3	15.6	0.0	-	-	-	-
14:25 0.7 15.6 0.0 - <t< td=""><td>14:23</td><td>2.2</td><td>15.5</td><td>0.0</td><td>-</td><td>-</td><td>-</td><td>-</td></t<>	14:23	2.2	15.5	0.0	-	-	-	-
14:26 1.6 15.6 0.0 - <t< td=""><td>14:24</td><td>1.3</td><td></td><td></td><td>-</td><td>- </td><td>-</td><td>-</td></t<>	14:24	1.3			-	-	-	-
14:27 0.6 15.5 0.0 - - - - 14:28 0.6 15.4 0.0 - - - - 14:29 1.0 15.5 0.0 - - - - 14:30 1.9 15.5 0.0 - - - - 14:31 2.3 15.6 0.0 - - - - 14:32 2.6 15.6 0.0 - - - - 14:33 2.3 15.6 0.0 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 14:33 2.3 15.6 0.0 - - - - - - - - - - - - - - - - - - - 14:33 2.3 15.6 0.0 - - - - - -	14:25				<u>-</u>	-	-	-
14:28 0.6 15.4 0.0 - - - - 14:29 1.0 15.5 0.0 - - - - 14:30 1.9 15.5 0.0 - - - - 14:31 2.3 15.6 0.0 - - - - 14:32 2.6 15.6 0.0 - - - - 14:33 2.3 15.6 0.0 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - <td>1</td> <td></td> <td></td> <td></td> <td>-</td> <td>-]</td> <td>-</td> <td>-</td>	1				-	-]	-	-
14:29 1.0 15.5 0.0 - - - 14:30 1.9 15.5 0.0 - - - 14:31 2.3 15.6 0.0 - - - 14:32 2.6 15.6 0.0 - - - 14:33 2.3 15.6 0.0 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -	1 1	- 1			-	-	-	-
14:30 1.9 15.5 0.0 - - - - 14:31 2.3 15.6 0.0 - - - - 14:32 2.6 15.6 0.0 - - - - 14:33 2.3 15.6 0.0 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - <td>1 1</td> <td></td> <td></td> <td></td> <td>- </td> <td>- </td> <td>- </td> <td>-</td>	1 1				-	-	-	-
14:31 2.3 15.6 0.0 - - - - 14:32 2.6 15.6 0.0 - - - - 14:33 2.3 15.6 0.0 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -	I I		l l		-	-	-	-
14:32 2.6 15.6 0.0 - - - - 14:33 2.3 15.6 0.0 - - - - - - - - - - - - - - - - - - - - - - -	i .				-	-	-	-
14:33 2.3 15.6 0.0 - - - - - - - - - - - - - - - - - - - - - - -	1 1				-	-	-	-
					-	-	- }	-
	14:33	2.3	15.6	0.0	-	-	-	-
	-	-	-	-	-	-	-	-
	-	-		-	-	-	-	-
, , , , , , , , , , , , , , , , , , ,	_	-	-	-	-	-	-	-
- - - Mean 0.8 14.2 2.5	-	-	-	-	Mean	0.8	14.2	2.5

Plant Layout

Stack Diagram


Sampling	Distance	Distance
Point	as a %	into
	of D	Stack (m)
1, 5	6.5	0.02
2, 6	25	0.10
3, 7	75	0.29
4, 8	93.5	0.36

Stack Diameter (D) =

0.38 m

Stack Area (A) =

0.11 m²

Total Particulate Matter Sampling Methodology

US EPA Method 5 requires the extraction of a particulate laden sample from the stack or duct, followed by the subsequent removal of the particulate matter by a filter medium. Concurrently, a measurement of the volume of the withdrawn sample gas is required to determine the particulate concentration. The sample is extracted by using a traversing procedure that approximately integrates the sample volume and collected particulate mass over the entire cross section of the stack or duct. During the sample traverse, the velocity distribution is also determined. This data provides the stack gas flow rate which is used with the particulate concentration to calculate the mass emission rate. Throughout the sampling period, therefore, the sample gas velocity in the probe nozzle is adjusted or re-adjusted to equal the stack gas velocity at each and every traverse point.

Laboratory Preparation

All glassware and metal components are cleaned in accordance with the clean up procedures as described later.

The required number of filter papers are heated in an oven at 105° C for a period of 2 hours and then placed in a desiccator until they can be weighed to a stable weight to within \pm 0.1 mg. The whole sampling train is assembled in a clean environment and the following checks carried out.

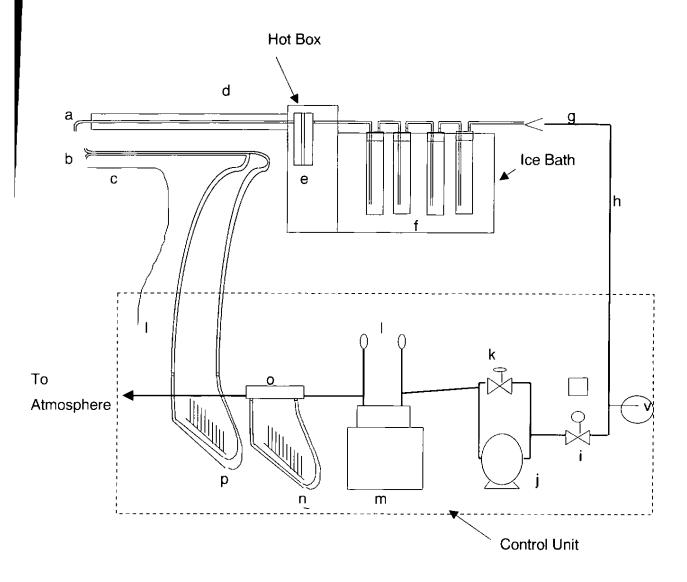
- 1. No obvious damage such as cracked glass, split wiring, cross threads etc.
- 2. With the impingers filled with the necessary amounts of distilled water/silica gel, a system leak check is performed.
- 3. Fluid reservoir levels for both liquid manometers are topped up to the required
- 4. All heated components and thermocouples are checked.
- 5. The umbilical cord is inspected for leaks and the wiring checked for flaws.
- 6. All the nozzle inlet diameters are measured and any distortions recorded.
- 7. Finally, the sampling train is dismantled and made ready for transport to site.

Sampling

The sampling train is unpacked and assembled as shown below. The following is then carried out.

- 1. A quick check to confirm all heated components are working correctly.
- 2. Measurement of the stack diameter and calculation of the appropriate sampling points.
- 3. At each of the sampling points, the pitot tube pressure drop and gas temperature are recorded.

Total Particulate Matter Sampling Methodology


- 4. Measurements of the stack pressure, gas composition and moisture content are noted and the nozzle diameter determined.
- 5. A filter of known weight is placed in it's housing unit and inserted into the heater box.
- 6. The heated probe and heater box are switched on and set to the required temperatures.
- 7. A sampling train leak check is performed.
- 8. The probe is positioned at the first sampling point.
- 9. The initial gas meter volume is recorded.
- 10. Sampling is then performed for an equal time period at each of the sampling points with all necessary data recorded throughout the test.
- 11. When sampling is complete, the final gas meter volume is recorded and a sampling train leak check is performed.
- 12. The sampling train is prepared to carry out a second test as outlined in the clean up procedure.

Clean Up Procedure

- The filter is removed and returned it to it's labelled petri dish. Any particulate matter
 deposited on the filter housing, probe lining and nozzle are collected and placed in
 the same petri dish. The filter housing, probe lining and nozzle are then rinsed with
 acetone, with the washings collected in a labelled container.
- The impinger solution from the first two impingers is poured into one labelled container.Any condensate collected in the third impinger is then added to this container
- 3. The silica gel from the fourth impinger is emptied into a labelled container.
- The impingers are then washed with distilled water and the washings poured into a labelled container.

Sampling Equipment

Sampling Train Used: Air Testing & Support Manual Sampling Train

K	e	v
	·	v

a	Quartz Nozzle	i	Coarse Control Valve
b	S-Type Pitot Tube	j	Vacuum Pump
С	Thermocouple	k	Fine Control Valve
d	Quartz Lined Heated Probe	1	Thermocouples
е	Filter Holder	m	Dry Gas Meter
f	Impingers	n	Orifice Manometer
g	Check Valve	0	Orifice Plate
h	Umbilical Cord	р	Pitot Manometer

Organic Compounds Sampling Methodology

The Signal 3010 MINIFID Portable Heated Total Hydrocarbon Analyser uses Flame Ionisation to detect total organic carbon in a gas stream.

Checks Carried Out before Arrival On Site

The FID analyser is set up and is tested. The following are checked; the furnace and sample line temperatures, the zero and span gas calibration and the operation of the data logger.

On Site Sampling Procedure

The FID and sample line are switched on and allowed to reach operational temperature. The analyser will take 20 minutes to reach its operational temperature of 180°C. The sample line is heated to approximately 180°C to avoid VOCs condensing in the line. When the components have reached the correct operating temperature the fuel and span gas valves are opened and the FID is ignited.

The FID will take about 20 minutes before it stabilises and gives a zero ppm reading. The zero gas is fed into the FID and the zero set. The span gas is fed into the FID and the instrument adjusted to read the certified span gas value. The zero gas is fed into the FID once more to check that the reading returns to zero, if it does not, then these steps are repeated.

The probe, with a particulate filter, is then inserted into the stack, and the data logger activated.

The data logger can be programmed to log results over a 1, 5, 10 etc minute period. The results displayed and logged are the volume concentration of propane in ppm, which are converted to mg/m³ by the following calculations:

$$\begin{array}{lll} C_m = C_v & \underline{36} \\ & 22.4 \end{array}$$
 where $\begin{array}{lll} C_m & \text{is the TOC concentration in mg/m}^3 \ (273 \ \text{K; 101300 Pa}) \\ & C_v & \text{is the volume concentration of propane in ppm (by volume)} \end{array}$
$$\begin{array}{lll} C_n = C_i & X & \left[\begin{array}{c} \underline{100} \\ 100 - \ \text{WH}_2O_m \end{array} \right] & X & \left[\begin{array}{c} \underline{21 - \ \text{W} \ O_{ref}} \\ 21 - \ \text{W} \ O_m \end{array} \right] \end{array}$$
 where C_n is the TOC concentration in mg/m³ stated at reference concentration in mg/m³ stated at reference concentration.

re	C _n	is the TOC concentration in mg/m³ stated at reference conditions of
1	C _i	humidity and oxygen is the TOC concentration in mg/m ³ (273 K; 101 300 Pa) at flue gas
	% H ₂ O _m	conditions of humidity and oxygen is the measured percentage by volume of water in the flue gas
	% O _m	is the measured percentage by volume of oxygen in the flue gas
	% O _{ref}	is the percentage by volume of oxygen at the reference conditions

Carbon Monoxide Sampling Methodology

The Testo 350 flue gas analyser is a portable instrument capable of measuring oxygen, carbon dioxide, carbon monoxide, stack temperature, date and time of test. The Testo 350 has a large measuring range for process control in industrial furnaces and a high accuracy level, even in the lower measuring ranges, for limit value control. Up to 500 measurements can be stored directly on location, with online data transmission to a PC possible for long-term measurements. The mobile gas preparation unit Testo 339, which dries the sample gas, can be connected as an option for long-term measurements.

Checks Carried Out Before Arrival On Site

Condensate traps are emptied and particulate filters replaced if necessary. The analyser when switched on, carries out a self-test (approximately 60 seconds) and rinses the measuring cells with fresh air. The analyser is tested with certified bottled calibration gas. If any cells require replacing, or adjustments are required to bring the analyser within calibration, these are made and a certificate of calibration produced. The handset is cleared of data and the analyser batteries fully charged.

On-Site Sampling Procedure

The flue gas probe is connected and the analyser switched on. The analyser is allowed to perform its self-test in fresh air. The appropriate fuel type is selected. The instrument status data (instrument temperature, battery voltage and pump capacity), required for smooth operation are checked. The complete measuring system (probe, condensate trap, tubes and connections) are leak tested. The measuring variables are set and a file created to which measurements are stored. The probe is positioned into the centre of the stack and the access hole plugged. The pump is started and measurements made. During long-term measurements the electronic measuring cells need fresh air phases to regenerate. The number and duration of the required fresh air times depends on the gas concentration and sample duration.

Post-Site Procedure

The handset memory is downloaded to PC and the analyser retested with calibration gas.

Operational Range

The O_2 sensor is a self powered, diffusion limited, metal air battery fuel cell. It has a resolution of 0.1% with an accuracy of 0.1%.

The CO cell has a resolution of 1 ppm with an accuracy of +/- 20 ppm at concentrations less than 400 ppm, +/- 5% at concentrations less than 2000 ppm and +/- 10% at concentrations greater than 2000 ppm.

All sensors and electrochemical cells have filters and cross sensitivity compensation data for more accurate measurements.

Quality Assurance Checklist

Preparation:

All glassware cleaned according to the appropriate test method.	Yes
Filters are dried, desiccated and weighed to achieve stable weights.	Yes
Equipment checked for faults and calibrated if necessary.	Yes
Sampling:	
Sampling train assembled and leak check performed in accordance with the appropriate test method.	Yes
Critical temperatures (hot box, probe, condenser and gas sample) maintained according to the appropriate test method.	Yes
Isokinetic variation within method requirement of \pm 10%.	Yes
Sample recovery according to the appropriate test method.	Yes
Sample Analysis:	
Samples sent to our accredited laboratory and analysis performed according to the appropriate analytical method.	Yes
QA Procedures:	
Equipment underwent a calibration check where necessary.	Yes
Recorded information downloaded and printouts made.	Yes
Report saved electronically onto Scientifics server.	Yes
On site data sheet completed and signed off by Team Leader.	Yes
Raw data and hard copy of report filed together.	Yes

Stack Emissions Testing Team

Jez Anderson

BSc (Hons) Physics

Environmental Team Leader

Environmental Technician(s)	Mark Woodruff BSc (Hons) Environmental Studies	5
Report by	Jez Anderson	
Tieport by	Team Leader	
Charles and Authorized Du	1	C:d
Checked and Authorised By	- Dz ANDERWY	Signed Print Name
	13/5/02	_Dated
	Business Manager / Team Leader (Delete as appropriate)	

Deviations from Test Methods

In this instance, testing was fully in accordance with the respective test methods.

Conclusion

The results of this monitoring exercise demonstrate that under normal operating conditions, this Plant is being operated in full compliance with all the emission concentration limits specified in PG5/2(95).

Good housekeeping and maintenance of the ducting and associated plant should be continued in order to maintain this level of Plant performance.

A regular programme of stack emissions testing in accordance with the Plant's LAPC Authorisation will be required to demonstrate continued compliance.

52 Offerton Industrial Estate, Hempshaw Lane, Stockport, SK2 5TJ.

Tel: 0161 477 3004 Fax: 0161 480 4642

Mobile: 07973 319576 (24 Hours) Email: james.bealing@scientifics.com

Stack Emissions Testing Report

Total Particulate Matter Hydrogen Chloride Organic Compounds Carbon Monoxide

Coventry City Council

Canley Crematorium

Cremator No. 4

Sampling Date(s)

15th April 2002

Report by

Mark Woodruff

Job Number

LAB 3561

Contents

	Page
Title Page	1
Introduction	2
Written Summary	3
Emissions Summary & Preliminary Temperature and Velocity Profile	4
Total Particulate Matter Summary	5
Hydrogen Chloride Summary	5
Organic Compounds Summary	5
Carbon Monoxide Summary	5
Equations 1 - 3	6 - 8
Organic Compounds & Carbon Monoxide Emissions Data	9 - 11
Stack Diagram	12
Plant Layout	12
Total Particulate Matter Sampling Methodology	13 - 14
Sampling Equipment	15
Organic Compounds Sampling Methodology	16
Combustion Gas Sampling Methodology	17
Quality Assurance Checklist	18
Stack Emissions Testing Team	19
Deviations From Test Methods	19
Conclusion	20

Introduction

Coventry City Council operate a Crematoria at Canley Crematorium which is subject to Local Air Pollution Control by Coventry County Council under the Environmental Protection Act 1990, Part 1.

Scientifics Limited were commissioned by Coventry City Council to carry out stack emissions testing to determine the releases of prescribed pollutants from the following Cremator under normal operating conditions.

Company	Coventry City Council
Site	Canley Crematorium
Stack	Cremator No. 4
Sampling Date(s)	15th April 2002
Cremator Manufacturer	Furance Construction Ltd
Cremator Model	Joule
Cremator Serial Number	CF407
Operating Conditions	Test 1 Test 2
Coffin Construction	Standard Standard
Mass of Deceased	Average Large
Cremation Number 1	140241 140245
Process	'Crematoria'
Guidance Note	PG5/2(95)

Any deviations from the respective test methods are noted in the conclusion.

Written Summary

Total Particulate Matter

Passed

Two particulate tests were performed, each lasting a complete cremation. The mean sampling time was 117 minutes. The mean particulate concentration was 54 mg/m³ at reference conditions. This value is below the emission concentration limit of 80 mg/m³ specified in PG5/2(95).

mot 25 voice

The sampling was performed in accordance with the main procedural requirements of US EPA Method 5 using a Air Testing & Support Manual Sampling Train.

Hydrogen Chloride

Passed

Two hydrogen chloride tests were performed, each lasting a complete cremation. The mean sampling time was 117 minutes. The mean hydrogen chloride concentration was 43 mg/m³ at reference conditions. This value is below the emission concentration limit of 200 mg/m³ specified in PG5/2(95).

mot 20°

The sampling was performed in accordance with the main procedural requirements of US EPA Method 26A using a Air Testing & Support Manual Sampling Train.

Organic Compounds

Failed

Two organic compounds tests were performed, each lasting a complete cremation. The mean sampling time was 117 minutes. The mean organic compounds concentration was 78 mg/m³ at reference conditions. This value is above the emission concentration limit of 20 mg/m³ specified in PG5/2(95).

mot as t

The sampling was performed in accordance with the main procedural requirements of US EPA Method 25A using a heated sampling line and a Signal 3010 MINIFID portable VOC analyser with detection by FID calibrated against 11 ppm propane span gas.

Carbon Monoxide

Passed

Two carbon monoxide tests were performed, each lasting a complete cremation. The mean sampling time was 117 minutes. The mean carbon monoxide concentration was 41 mg/m 3 at reference conditions. This value is below the emission concentration limit of 100 mg/m 3 specified in PG5/2(95).

The sampling was performed using a heated sampling line with a Testo 339 gas conditioning unit and a Testo 350 flue gas analyser with detection by electrochemical cells calibrated against 99 ppm carbon monoxide span gas.

Reference conditions are 273K, 101.3kPa and 11% oxygen, dry gas.

co meters

Emissions Summary

Company

Coventry City Council Canley Crematorium

Site Stack

Cremator No. 4

Sampling Date(s)

15th April 2002

Parameter	Units	Result	Limit	Outcome
Total Particulate Matter	mg/m ³	54	80	Passed
Total Particulate Matter Emission Rate	g/hr	63	-	-
Isokinetic Variation	%	-3.2	-	-
Hydrogen Chloride	mg/m³	43	200	Passed
Hydrogen Chloride Emission Rate	g/hr	49	-	
Organic Compounds	mg/m ³	78	20	Failed
Organic Compounds Emission Rate	g/hr	94	-	<u> </u>
Carbon Monoxide	mg/m ³	41	100	Passed
Carbon Monoxide Emission Rate	g/hr	52	-	
Oxygen	% v/v	9.9	-	-
Temperature	ပ္	884		-
Moisture	% v/v	11.1	-	-
Gas Velocity	m/s	9.0	-	-
Gas Volumetric Flow Rate (Actual)	m³/hr	5179	-	-
Gas Volumetric Flow Rate (STP)	m ³ /hr	1077	-	-

All results are mean values, with pollutant concentrations expressed at reference conditions. Reference conditions are 273K, 101.3kPa and 11% oxygen, dry gas.

Preliminary Velocity and Temperature Profile

	Line A			Line B		
Traverse	Dynamic	Temp	Velocity	Dynamic	Temp	Velocity
Point	Pressure	°C	m/s	Pressure	°C	m/s
	Pa			Pa		
1	20	805	8.79	23	810	9.45
2	25	806	9.83	24	810	9.65
3	22	806	9.22 ,	22	809	9.23
4	23	806	9.43	23	809	9.44
5	20	807	8.80	25	811	9.85
6	24	808	9.64	25	811	9.85
7	23	807	9.43	24	811	[,] 9.65
8	25	809	9.84	23	811	9.45
9	23	809	9.44	₂ 25	812	9.86
10	24	808	9.64	25	811	9.85
Mean	22	807	9.41	23	811	9.63

Total Particulate Matter Summary

Particulate	Sampling Times	Concentration	Emission Rate
		mg/m³	g/hr
Test 1	13:05 -14:59	32	41
Test 2	15:18 - 17:18	75	85
Mean Particulate C	oncentration	54	63

Reference conditions are 273K, 101.3kPa and 11% oxygen, dry gas.

Hydrogen Chloride Summary

HCI	Lab Result	Volume Sampled	Concentration	Emission Rate	
	mg	m ³	mg/m ³	g/hr	
Test 1	25	1.7172	15	18	
Test 2	105	1.5044	70	80	
Mean HCl Concentration			43	49	

Reference conditions are 273K, 101.3kPa and 11% oxygen, dry gas.

Organic Compounds Summary

Organic Compounds	Sampling Times	Concentration	Emission Rate
		mg/m³	g/hr
Test 1	13:05 -14:59	93	117
Test 2	est 2 15:18 - 17:18		71
Mean Organic Compour	nds Concentration	78	94

Reference conditions are 273K, 101.3kPa and 11% oxygen, dry gas.

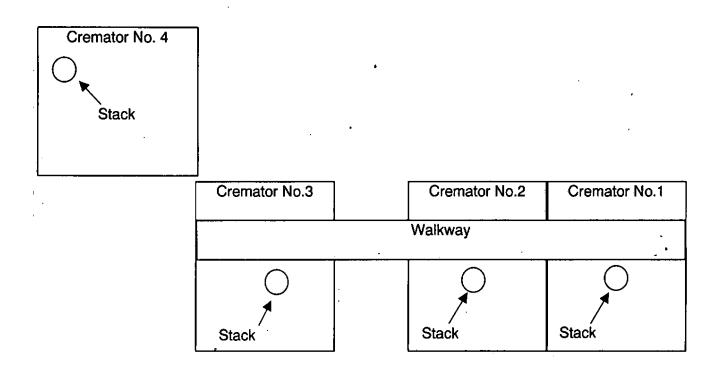
Carbon Monoxide Summary

Carbon Monoxide	Sampling Times	Concentration mg/m ³	Emission Rate g/hr	
Test 1	13:05 -14:59	82	103	
Test 2 15:18 - 17:18		0.65	0.74	
Mean Carbon Monoxid	de Concentration	41	52	

Reference conditions are 273K, 101.3kPa and 11% oxygen, dry gas.

Test	1	2	Units
Date	15.04.02	15.04.02	-
Absolute pressure of stack gas, P _s			
Barometric pressure, P _b	753.0	753.0	mm Hg
Stack static pressure, P _{static}	5.10	5.10	mm H₂O
$P_s = P_b + (P_{static})$	753.4	753.4	mm Hg
13.6			
Volume of water vapour collected, V _{wstd}			
Impinger volume collected	99	119	ml
Silica gel weight increase	35	36	g
Total volume of liquid collected, V _{Ic}	134	155	mi
$V_{wstd} = (0.001246)(V_{lc})$	0.1662	0.1931	m ³
Volume of gas metered, V _{mstd}			
Volume of gas sample through gas meter, V_m	1.6653	1.5110	m³
Gas meter correction factor, Y _d	0.9787	0.9787	-
Average dry gas meter temperature, T _m	17.2	19.7	°C
Average pressure drop across orifice, ΔH	24.08	20.98	mm H₂O
$V_{mstd} = (0.3592)(V_m)(P_b + (\Delta H/13.6))(Y_d)$	1.5226	1.3693	m³
T _m + 273			
Volume of gas at X% oxygen, V _{mstd@X% oxygen}			
% oxygen measured in gas stream, act%O ₂	9.7	10.0	%
% oxygen at which results required X%	11.0	11.0	%
% oxygen in ambient air by volume	20.9	20.9	%
$O_{\text{xygen@11\%}} = 20.9 - \text{act\%}O_2$	1.13	1.10	-
20.9 - X%			
$V_{\text{mstd}@X\%oxygen} = (V_{\text{mstd}})(O_{\text{xygen}@11\%})$	1.7172	1.5044	m³
Moisture content, B _{wo}			
$B_{wo} = V_{wstd}$	0.098	0.124	m³
V _{mstd} + V _{wstd}			
	9.84	12.36	%
Wet volume of gas metered, V _{mstw}			
V _{mstw} = V _{mstd@X%oxygen} + V _{wstd}	1.8834	1.6975	m³

Test	1	2	Units
Date	15.04.02	15.04.02	-
Molecular weight of dry gas stream, M _d			
CO ₂	6.4	6.2	%
O ₂	9.7	10.0	%
co	0.0104	0.0000	%
Total	16.10	16.22	%
N ₂ (100 -Total)	83.90	83.78	%
$M_d = 0.44(\%CO_2) + 0.32(\%O_2) + 0.28(\%CO + \%N_2)$	29.41	29.39	g/gmol
Molecular weight of stack gas (wet), M _s			
$M_s = M_d(1 - B_{wo}) + 18(B_{wo})$	28.28	27.98	g/gmol
Velocity of stack gas, V _s			
Pitot tube velocity constant, K _p	34.97	34.97	-
Velocity pressure coefficient, C _p	0.79	0.79	-
Average of velocity heads, ΔP_{avg}	2.10	1.84	mm H ₂ O
Average square root of velocity heads, √∆P	1.45	1.35	√mm H₂O
Average stack gas temperature, T _s	900	867	°C
$V_{s} = (K_{p})(C_{p})(\sqrt{\Delta P})(\sqrt{T_{s}} + 273)$	9.38	8.71	m/s
√(Ms)(Ps)			
Actual flow of stack gas, Q _a	·		
Area of stack, A _s	0.16	0.16	m^2
$Q_{a} = (60)(A_{s})(V_{s})$	89.6	83.1	m³/min
Dry total flow of stack gas, Q _{std}			
Conversion factor (K/mm.Hg)	0.3592	0.3592	-
$Q_{std} = (Q_a)P_s(0.3592)(1-B_{wo})$	18.6	17.3	m³/min
(T _s) +273			
Wet total flow of stack gas, Q _{stw}			
Conversion factor (K/mm.Hg)	0.3592	0.3592	-
$Q_{std} = (Q_a)P_s(0.3592)$	20.7	19.7	m³/min
(T _s) +273			


Test	1	2	Units
Date	15.04.02	15.04.02	-
Percent isokinetic, %I			
Nozzle area, A _n	113.11	113.11	mm²
Total sampling time, θ	114	120	min
$\%I = (4.6398E6)(T_s+273)(V_{mstd})$	100:8	92.9	%
${(P_s)(V_s)(A_n)(\theta)(1-B_{wo})}$			
Percentage isokinetic acceptable ± 10%	Yes	Yes	-
Particulate Concentration, C		_	
Mass of particulate collected on filter, M _f	0.0558	0.1124	g
Mass of particulate collected in probe, M _p	0.0000	0.0000	g
Mass of total particulate collected, M _n	0.0558	0.1124	g
$C_{dry} = M_n$	36.6	82.1	mg/m³
V _{mstd}			J.
$C_{\text{wet}} = M_{\text{n}}$	29.6	66.2	mg/m ³
V _{mstw}			<i>J</i>
C _{@11%oxygen} = M _n	32.5	74.7	mg/m ³
V _{mstd@11%oxygen}	'		3,
Particulate emission rate, E _{g/hr}			
$E_{g/hr} = (C_{dry})(Q_{std})(60)$	41.0	85.1	g/hr
1000			
Cremation Details			
Cremation Date	15.04.02	15.04.02	-
Cremation Number	140241	140245	•
Mass of Deceased	Average	Large	_
Gender of Deceased	Male	Male	-
Coffin Features	Standard	Standard	-

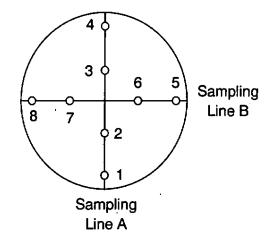
Time	ОС	O ₂	СО	Time	ОС	O ₂	СО
	mg/m ³	% v/v	mg/m ³		mg/m³	% v/v	mg/m³
	Test 1 -	15.04.02			Test 1 -	15.04.02	1g//_
13:05	9.1	9.9	0.0	13:50	75	3.9	15
13:06	9.2	9.8	7.8	13:51	83	4.5	14
13:07	8.2	7.5	874	13:52	102	4.9	12
13:08	7.7	8.6	33	13:53	114	5.1	9.4
13:09	8.1	9.4	17	13:54	118	5.3	9.5
13:10	7.6	8.8	107	13:55	115	5.2	7.9
13:11	7.0	8.6	9.1	13:56	118	5.8	7.4
13:12	7.5	7.9	5.7	13:57	129	6.0	6.7
13:13	10.0	9.3	0.0	13:58	177	9.6	6.6
13:14	9.6	9.2	40	13:59	185	10.2	5.8
13:15	9.6	9.5	23	14:00	195	10.5	0.0
13:16	8.1	9.6	11	14:01	197	10.5	0.0
13:17	12	9.9	0.0	14:02	205	9.2	0.0
13:18	14	10.5	5.9	14:03	224	9.8	0.0
13:19	14	10.7	0.0	14:04	213	9.1	0.0
13:20	17	10.3	0.0	14:05	221	9.4	0.0
13:21	40	11.1	0.0	14:06	230	9.5	0.0
13:22	109	10.2	0.0	14:07	237	9.9	0.0
13:23	178	11.1	0.0	14:08	248	10.2	0.0
13:24	193	10.1	0.0	14:09	251	10.2	0.0
13:25	212	10.9	0.0	14:10	253	10.3	0.0
13:26	256	12.6	12	14:11	263	10.6	0.0
13:27	263	12.7	0.0	14:12	199	8.6	0.0
13:28	250	12.6	8.9	14:13	218	11.0	0.0
13:29	277	13.2	0.0	14:14	162	9.0	0.0
13:30	254	12.6	0.0	14:15	201	11.1	0.0
13:31	274	13.3	0.0	14:16	213	12.0	0.0
13:32	164	8.4	0.0	14:17	133	6.9	0.0
13:33	198	13.0	0.0	14:18	86	12.3	0.0
13:34	63	5.4	0.0	14:19	27	6.9	0.0
13:35	45	4.9	0.0	14:10	8.0	12.1	0.0
13:36	36	0.8	492	14:21	16	12.3	0.0
13:37	37	0.1	3080	14:22	6.5	7.4	0.0
13:38	35	0.4	1202	14:23	6.7	13.1	0.0
13:39	35	0.8	822	14:24	2.6	14.2	0.0
13:40	36	1.4	246	14:25	2.8	8.5	0.0
13:41	41	1.6	133	14:26	6.0	9.1	0.0
13:42	41	2.6	70	14:27	39	12.8	0.0
13:43	48	3.1	54	14:28	31	8.9	0.0
13:44	52	3.5	44	14:29	56	13.4	0.0
13:45	53	4.1	37	14:30	34	9.0	0.0
13:46	53	3.8	30	14:31	90	9.9	0.0
13:47	67	4.4	25	14:32	109	9.9	0.0
13:48	78	4.4	22	14:33	223	13.9	0.0
13:49	81	4.9	19	14:34	332	15.9	0.0

Time	ОС	O ₂	CO	Time	ОС	O ₂	co
*	mg/m³	% v/v	mg/m ³	, .	mg/m ³	% v/v	mg/m³
Test 1 - 15.04.02			Test 2 - 15.04.02				
14:35	311	15.6	0.0	15:18	30	7.6	4.6
14:36	131	8.5	0.0	15:19	41	10.6	0.0
14:37	160	11.2	0.0	15:20	16	8.7	0.0
14:38	79	9.5	0.0	15:21	19	10.4	0.0
14:39	40	10.3	0.0	15:22	26	11.1	0.0
14:40	5.1	10.5	0.0	15:23	16	7.5	0.0
14:41	3.3	10.2	0.0	15:24	13	7.9	0.0
14:42	1.7	10.7	0.0	15:25	14	10.8	0.0
14:43	3.3	10.2	0.0	15:26	17	11.5	0.0
14:44	3.5	10.8	0.0	15:27	9.5	11.3	0.0
14:45	5.1	10.5	0.0	,15:28	6.1	12.0	0.0
14:46	5.4	11.1	0.0	15:29	4.9	13.5	0.0
14:47	3.4	10.4	0.0	15:30	7.2	13.3	0.0
14:48	5.4	11.1	0.0	15:31	9.0	12.8	0.0
14:49	3.4	10.7	0.0	15:32	3.5	10.4	0.0
14:50	17	17.8	0.0	15:33	1.9	11.3	0.0
14:51	13	18.2	0.0	15:34	6.8	12.9	0.0
14:52	14	18.3	0.0	15:35	14	12.9	0.0
14:53	6.9	18.4	0.0	15:36	12	13.1	0.0
14:54	21	18.4	35	15:37	23	13.9	0.0
14:55	17	18.9	680	15:38	29	, 13.4 .	0.0
14:56	10	17.4	150	15:39	27	12.7	0.0
14:57	11	17.6	129	15:40	30	13.0	0.0
14:58	22	18.5	130	15:41	25	12.8	0.0
14:59	58	19.7	733	15:42	32	12.9	0.0
-	-	-	-	15:43	23	10.4	0.0
-	-	. .	-	15:44	18	9.8	0.0
-	-	-	-	15:45	26	13.9	0.0
'-	-	-	-	15:46	13	13.9	0.0
-	-	-	-	15:47	18	13.0	0.0
-	-	-	.	15:48	5.2	13.9	0.0
-	-	-	-	15:49	2.2	12.5	0.0
-	-	-	-	15:50	5.1	13.8	0.0
· -	-	-	-	15:51	1.5	9.1	0.0
-	-	-	<u>-</u>	15:52	5. 9	11.7	0.0
-	-	-	-	15:53	4.2	12.2	0.0
		-	<u>-</u>	15:54 15:55	4.6 7.2	13.1 13.3	0.0 0.0
·	-	-	-	15:55 15:56	7.2 6.9	13.3	0.0
_	-	_	<u>-</u>	15:56 15:57	10	12.2	0.0
_		_	_				0.0
_	-	-	-	15:58	14	10.2	
: ⁻	<u>-</u>	-	-	15:59	12	13.2	0.0
-	-	-	- ,	16:00	9.6	3.9	0.0
-	-	-	-	16:01	12	5.2	0.0
Mean	93.3	9.7	81.6	16:02	16	5.3	0.0

Time	ОС	O ₂	СО	Time	ос	· O ₂	co
	mg/m ³	% v/v	mg/m ³		mg/m ³	% v/v	mg/m ³
	Test 2 -	15.04.02		Test 2 - 15.04.02			
16:03	14	5.4	0.0	16:48	135	12.2	0.0
16:04	14	6.1	0.0	16:49	100	13.3	0.0
16:05	13	6.1	0.0	16:50	102	14.0	0.0
16:06	15	6.5	0.0	16:51	64	12.2	0.0
16:07	18	6.9	0.0	16:52	45	12.1	0.0
16:08	17	6.9	0.0	16:53	43	12.4	0.0
16:09	17	7.0	0.0	16:54	37	12.1	0.0
16:10	19	7.5	0.0	16:55	45	12.4	0.0
16:11	16	7.2	0.0	16:56	33	12.5	0.0
16:12	14	7.1	0.0	16:57	34	12.4	0.0
16:13	16	7.6	0.0	16:58	25	12.8	0.0
16:14	18	7.6	0.0	16:59	50	12.8	0.0
16:15	76	7.8	0.0	17:00	66	14.6	0.0
16:16	123	7.8	0.0	17:01	88	13.1	0.0
16:17	133	7.9	0.0	17:02	198	17.0	16
16:18	124	5.9	0.0	17:03	206	17.2	30
16:19	141	6.5	0.0	17:04	184	17.4	28
16:20	167	6.5	0.0	17:05	67 07	13.3	0.0
16:21	176	5.6	0.0	17:06	27	6.8	0.0
16:22 16:23	164 162	4.8 5.0	0.0	17:07	28 24	10.6	0.0
16:24	174	5.0 5.9	0.0 0.0	17:08 17:09	38	11.8 14.3	0.0
16:25	152	6.3	0.0	17:09	30	14.3	0.0 0.0
16:26	147	6.4	0.0	17:10	44	10.5	0.0
16:27	114	5.7	0.0	17:12	104	13.2	0.0
16:28	125	5.8	0.0	17:13	123	13.3	0.0
16:29	131	5.9	0.0	17:14	88	9.8	0.0
16:30	144	6.4	0.0	17:15	94	13.6	0.0
16:31	148	6.5	0.0	17:16	47	9.7	0.0
16:32	138	6.6	0.0	17:17	88	13.9	0.0
16:33	140	6.4	0.0	17:18	36	9.7	0.0
16:34	137	6.3	0.0	-	-	-	-
16:35	127	6.3	0.0	-	-	-	-
16:36	135	6.9	0.0	-	-	-	-
16:37	132	6.7	0.0	-	-	-	-
16:38	136	6.7	0.0	-	-	-	-
16:39	137	6.5	0.0	-	-	-	-
16:40	115	6.8	0.0	-	-	-	-
16:41	108	7.3	0.0	-	-	-	-
16:42	100	7.2	0.0	-	-	-	-
16:43	107	7.8	0.0	-	-	-	-
16:44	103	7.9	0.0	-	-	-	-
16:45	107	8.8	0.0	-	-	-	-
16:46	115	10.5	0.0	-		-	-
16:47	113	11.1	0.0	Mean	61.8	10.0	0.6

Plant Layout

Stack Diagram


Sampling	Distance	Distance
Point	as a %	into
	of D	Stack (m)
1, 5	6.5	0.03
2, 6	25	0.11
3, 7	75	0.34
4, 8	93.5	0.42

Stack Diameter (D) =

0.45 m

Stack Area (A) =

0.16 m²

Total Particulate Matter Sampling Methodology

US EPA Method 5 requires the extraction of a particulate laden sample from the stack or duct, followed by the subsequent removal of the particulate matter by a filter medium. Concurrently, a measurement of the volume of the withdrawn sample gas is required to determine the particulate concentration. The sample is extracted by using a traversing procedure that approximately integrates the sample volume and collected particulate mass over the entire cross section of the stack or duct. During the sample traverse, the velocity distribution is also determined. This data provides the stack gas flow rate which is used with the particulate concentration to calculate the mass emission rate. Throughout the sampling period, therefore, the sample gas velocity in the probe nozzle is adjusted or re-adjusted to equal the stack gas velocity at each and every traverse point.

Laboratory Preparation

All glassware and metal components are cleaned in accordance with the clean up procedures as described later.

The required number of filter papers are heated in an oven at 105° C for a period of 2 hours and then placed in a desiccator until they can be weighed to a stable weight to within \pm 0.1 mg. The whole sampling train is assembled in a clean environment and the following checks carried out.

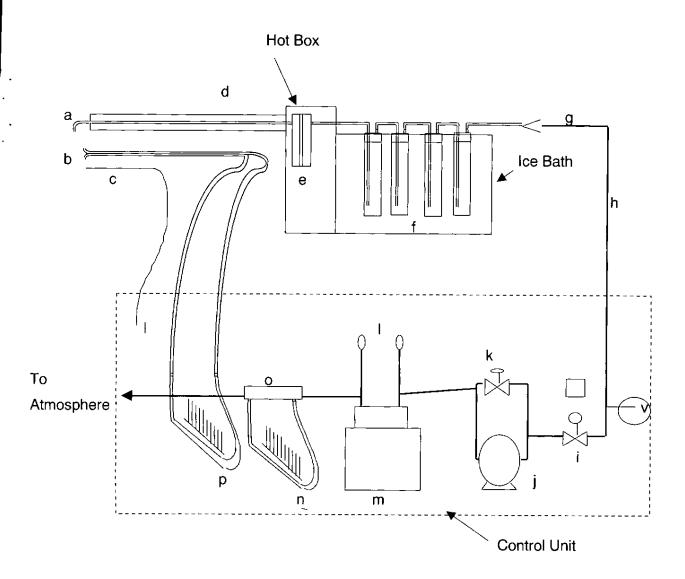
- 1. No obvious damage such as cracked glass, split wiring, cross threads etc.
- 2. With the impingers filled with the necessary amounts of distilled water/silica gel, a system leak check is performed.
- 3. Fluid reservoir levels for both liquid manometers are topped up to the required
- 4. All heated components and thermocouples are checked.
- 5. The umbilical cord is inspected for leaks and the wiring checked for flaws.
- 6. All the nozzle inlet diameters are measured and any distortions recorded.
- 7. Finally, the sampling train is dismantled and made ready for transport to site.

Sampling

The sampling train is unpacked and assembled as shown below. The following is then carried out.

- 1. A quick check to confirm all heated components are working correctly.
- Measurement of the stack diameter and calculation of the appropriate sampling points.
- 3. At each of the sampling points, the pitot tube pressure drop and gas temperature are recorded.

Total Particulate Matter Sampling Methodology


- 4. Measurements of the stack pressure, gas composition and moisture content are noted and the nozzle diameter determined.
- 5. A filter of known weight is placed in it's housing unit and inserted into the heater box.
- 6. The heated probe and heater box are switched on and set to the required temperatures.
- 7. A sampling train leak check is performed.
- 8. The probe is positioned at the first sampling point.
- 9. The initial gas meter volume is recorded.
- 10. Sampling is then performed for an equal time period at each of the sampling points with all necessary data recorded throughout the test.
- 11. When sampling is complete, the final gas meter volume is recorded and a sampling train leak check is performed.
- 12. The sampling train is prepared to carry out a second test as outlined in the clean up procedure.

Clean Up Procedure

- 1. The filter is removed and returned it to it's labelled petri dish. Any particulate matter deposited on the filter housing, probe lining and nozzle are collected and placed in the same petri dish. The filter housing, probe lining and nozzle are then rinsed with acetone, with the washings collected in a labelled container.
- The impinger solution from the first two impingers is poured into one labelled container.
 Any condensate collected in the third impinger is then added to this container.
- 3. The silica gel from the fourth impinger is emptied into a labelled container.
- 4. The impingers are then washed with distilled water and the washings poured into a labelled container.

Sampling Equipment

Sampling Train Used: Air Testing & Support Manual Sampling Train

ľ	~ .
n	ΗV

a	Quartz Nozzle	i	Coarse Control Valve
b	S-Type Pitot Tube	j	Vacuum Pump
С	Thermocouple	k	Fine Control Valve
d	Quartz Lined Heated Probe	1	Thermocouples
е	Filter Holder	m	Dry Gas Meter
f	Impingers	n	Orifice Manometer
g	Check Valve	0	Orifice Plate
h	Umbilical Cord	D	Pitot Manometer

Organic Compounds Sampling Methodology

The Signal 3010 MINIFID Portable Heated Total Hydrocarbon Analyser uses Flame Ionisation to detect total organic carbon in a gas stream.

Checks Carried Out before Arrival On Site

The FID analyser is set up and is tested. The following are checked; the furnace and sample line temperatures, the zero and span gas calibration and the operation of the data logger.

On Site Sampling Procedure

The FID and sample line are switched on and allowed to reach operational temperature. The analyser will take 20 minutes to reach its operational temperature of 180°C. The sample line is heated to approximately 180°C to avoid VOCs condensing in the line. When the components have reached the correct operating temperature the fuel and span gas valves are opened and the FID is ignited.

The FID will take about 20 minutes before it stabilises and gives a zero ppm reading. The zero gas is fed into the FID and the zero set. The span gas is fed into the FID and the instrument adjusted to read the certified span gas value. The zero gas is fed into the FID once more to check that the reading returns to zero, if it does not, then these steps are repeated.

The probe, with a particulate filter, is then inserted into the stack, and the data logger activated.

The data logger can be programmed to log results over a 1, 5, 10 etc minute period. The results displayed and logged are the volume concentration of propane in ppm, which are converted to mg/m³ by the following calculations:

$$C_{\rm m} = C_{\rm v} = 36$$

where
$$C_m$$
 is the TOC concentration in mg/m³ (273 K; 101300 Pa) is the volume concentration of propane in ppm (by volume)

$$C_n = C_i X \left[\frac{100}{100 - \%H_2O_m} \right] X \left[\frac{21 - \% O_{ref}}{21 - \% O_m} \right]$$

Carbon Monoxide Sampling Methodology

The Testo 350 flue gas analyser is a portable instrument capable of measuring oxygen, carbon dioxide, carbon monoxide, stack temperature, date and time of test. The Testo 350 has a large measuring range for process control in industrial furnaces and a high accuracy level, even in the lower measuring ranges, for limit value control. Up to 500 measurements can be stored directly on location, with online data transmission to a PC possible for long-term measurements. The mobile gas preparation unit Testo 339, which dries the sample gas, can be connected as an option for long-term measurements.

Checks Carried Out Before Arrival On Site

Condensate traps are emptied and particulate filters replaced if necessary. The analyser when switched on, carries out a self-test (approximately 60 seconds) and rinses the measuring cells with fresh air. The analyser is tested with certified bottled calibration gas. If any cells require replacing, or adjustments are required to bring the analyser within calibration, these are made and a certificate of calibration produced. The handset is cleared of data and the analyser batteries fully charged.

On-Site Sampling Procedure

The flue gas probe is connected and the analyser switched on. The analyser is allowed to perform its self-test in fresh air. The appropriate fuel type is selected. The instrument status data (instrument temperature, battery voltage and pump capacity), required for smooth operation are checked. The complete measuring system (probe, condensate trap, tubes and connections) are leak tested. The measuring variables are set and a file created to which measurements are stored. The probe is positioned into the centre of the stack and the access hole plugged. The pump is started and measurements made. During long-term measurements the electronic measuring cells need fresh air phases to regenerate. The number and duration of the required fresh air times depends on the gas concentration and sample duration.

Post-Site Procedure

The handset memory is downloaded to PC and the analyser retested with calibration gas.

Operational Range

The O₂ sensor is a self powered, diffusion limited, metal air battery fuel cell. It has a resolution of 0.1% with an accuracy of 0.1%.

The CO cell has a resolution of 1 ppm with an accuracy of +/- 20 ppm at concentrations less than 400 ppm, +/- 5% at concentrations less than 2000 ppm and +/- 10% at concentrations greater than 2000 ppm.

All sensors and electrochemical cells have filters and cross sensitivity compensation data for more accurate measurements.

Quality Assurance Checklist

Preparation:

All glassware cleaned according to the appropriate test method.	Yes
Filters are dried, desiccated and weighed to achieve stable weights.	Yes
Equipment checked for faults and calibrated if necessary.	Yes
Sampling:	
Sampling train assembled and leak check performed in accordance with the appropriate test method.	Yes
Critical temperatures (hot box, probe, condenser and gas sample) maintained according to the appropriate test method.	Yes
Isokinetic variation within method requirement of ± 10%.	Yes
Sample recovery according to the appropriate test method.	Yes
Sample Analysis:	
Samples sent to our accredited laboratory and analysis performed according to the appropriate analytical method.	Yes_
QA Procedures:	
Equipment underwent a calibration check where necessary.	Yes
Recorded information downloaded and printouts made.	Yes
Report saved electronically onto Scientifics server.	Yes
On site data sheet completed and signed off by Team Leader.	Yes
Pays data and hard conv of report filed together	Vec

Stack Emissions Testing Team

Jez Anderson

Environmental Team Leader

	BSc (Hons) Physics	
Environmental Technician(s)	Mark Woodruff BSc (Hons) Environmental Studie	s
Report by	Mark Woodruff	
	Environmental Technican	1
Checked and Authorised By	ALSO (4)	Signed Print Name
	TEZ ANDERSU	Dated

<u>Вцеіness Manage</u>r / Team Leader Business Title (Delete as appropriate)

Deviations from Test Methods

In this instance, testing was fully in accordance with the respective test methods.

Conclusion

The results of these tests demonstrate that under normal operating conditions, this Plant is being operated with emissions of Organic Compounds in excess of the emission concentration limits specified in PG5/2(95).

The performance of the Plant should be immediately investigated and steps taken to reduce emissions of Organic Compounds to a level below the emission concentration limits specified in PG5/2(95).

A regular programme of stack emissions testing in accordance with the Plant's LAPC Authorisation will be required to demonstrate future compliance.

52 Offerton Industrial Estate, Hempshaw Lane, Stockport, SK2 5TJ.

Tel: 0161 477 3004 Fax: 0161 480 4642

Mobile: 07973 319576 (24 Hours) Email: james.bealing@scientifics.com

Stack Emissions Testing Report

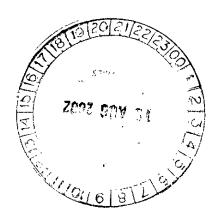
Organic Compounds

Coventry City Council

Canley Crematorium

Cremator No. 4

Sampling Date(s)


7th August 2002

Report by

Jez Anderson

Job Number

LAB 3792

Contents

	Page
Title Page	1
Introduction	2
Written Summary	3
Emissions Summary & Organic Compounds Summary	4
Organic Compounds & Carbon Monoxide Emissions Data	5 - 7
Plant Layout	8
Combustion Gas Sampling Methodology	9
Organic Compounds Sampling Methodology	10
Quality Assurance Checklist	11
Deviations From Test Methods	12
Conclusion	12

Introduction

Coventry City Council operate a Crematoria at Canley Crematorium which is subject to Local Air Pollution Control by Coventry County Council under the Environmental Protection Act 1990, Part 1.

Scientifics Limited were commissioned by Coventry City Council to carry out stack emissions testing to determine the releases of prescribed pollutants from the following Cremator under normal operating conditions.

Company	Coventry City Council		
Site	Canley Crematorium		
Stack	Cremator No. 4		
Sampling Date(s)	7th August 2002		
Cremator Manufacturer	Furnance Construction Ltd		
Cremator Model	Joule		
Cremator Serial Number	CF407		
Operating Conditions	Test 1 Test 2		
Coffin Construction	Standard Standard		
Mass of Deceased	Average Small		
Cremation Number	141057 141060		
Process	'Crematoria'		
Guidance Note	PG5/2(95)		

Any deviations from the respective test methods are noted in the conclusion.

City De

Coventry City Council

Kachel.

here is the report of the retailing to the distribution or winds is now that it housed

City Development Directorate Environmental Services Coventry Bereavement Services
The Lodge
Cannon Hill Road
Coventry
CV4 7DF

With compliments

Written Summary

Organic Compounds

Passed

Two organic compounds tests were performed, each lasting a complete cremation. The mean sampling time was 85.5 minutes. The mean organic compounds concentration was 1.7 mg/m³ at reference conditions. This value is below the emission concentration limit of 20 mg/m³ specified in PG5/2(95).

The sampling was performed in accordance with the main procedural requirements of US EPA Method 25A using a heated sampling line and a Signal 3010 MINIFID portable VOC analyser with detection by FID calibrated against 11 ppm propane span gas.

Reference conditions are 273K, 101.3kPa and 11% oxygen, dry gas.

Emissions Summary

Company

Coventry City Council

Site

Canley Crematorium

Stack

Cremator No. 4

Sampling Date(s)

7th August 2002

Parameter	Units	Result	Limit	Outcome
Organic Compounds	mg/m ³	1.7	20	Passed
Organic Compounds Emission Rate	g/hr	1.8	-	-
Oxygen	% v/v	9.8	_	
Temperature	°C	757	_	-
Moisture	% v/v	11.1	-	-
Gas Velocity	m/s	9.0		-
Gas Volumetric Flow Rate (Actual)	m³/hr	5179	-	-
Gas Volumetric Flow Rate (STP)	m³/hr	1077	_	-

Organic Compounds Summary

Organic Compounds	Sampling Times	Concentration	Emission Rate
		mg/m ³	g/hr
Test 1	11:07 - 12:40	2.2	2.4
Test 2	12:52 - 14:10	1.1	1.2
Mean Organic Compour	nds Concentration	1.7	1.8

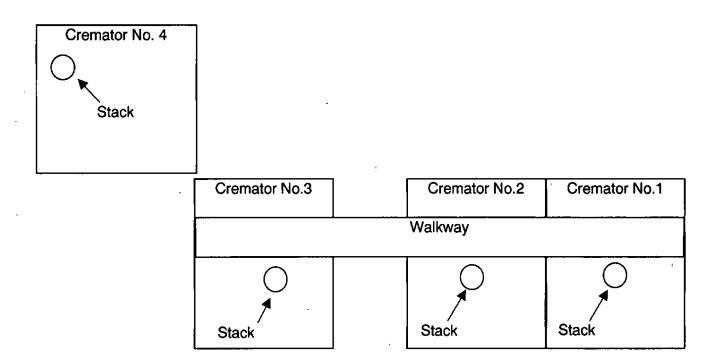
All results are mean values, with pollutant concentrations expressed at reference conditions. Reference conditions are 273K, 101.3kPa and 11% oxygen, dry gas.

Organic Compounds Emissions Data

Time	ОС	O ₂	Time	ОС	O ₂
Time	mg/m ³	% v/v	111116	mg/m ³	% v/v
Te	est 1 - 07.08	<u>. </u>	Te	est 1 - 07.08	
11:07	2.8 ′	0.0	11:52	0.6	11.9
11:08	3.5	4.2	11:53	0.1	5.9
11:09	4.1	8.1	11:54	0.4	11.0
11:10	4.1	10.6	11:55	0.0	9.2
11:11	5.3	12.7	11:56	0.0	7.0
11:12	6.3	13.1	11:57	0.3	11.8
11:12	5.6	10.6	11:58	0.0	7.1
11:14	5.0	9.3	11:59	0.3	12.4
11:15	6.4	8.9	12:00	0.1	7.0
11:16	6.9	9.5	12:01	0.3	10.0
11:17	6.4	8.5	12:02	0.5	7.6
11:18	5.9 ⁻	9.6	12:03	0.1	7.6 7.4
11:19	6.2	10.4	12:04	0.2	11.4
11:20	5.8	9.4	12:04	0.1	7.7
11:21	5.1 °	8.2	12:05	0.1	13.0
11:22	5.9	9.9	12:07	0.2	7.5
11:23	5.5-	8.4	12:07	0.1	7.5 13.0
11:24	5.4 ×	7.8	12:08		7.4
11:24	5.4 · 4.8 ·	6.3	12:09	0.3 0.2	7. 4 13.3
11:26	5.5´	7.6	12:11	1.3	8.3
11:27	5.4	7.2	12:12	0.5	13.7
11:28	5.0 ′	7.0	12:13	0.2	8.3
11:29	4.9 ′	7.1	12:14	0.2	13.4
11:30	5.0 /	7.6	12:15	0.1	8.7
11:31	4.6 ~	6.7	12:16	0.0	9.7
11:32	4.6 -	7.2	12:17	0.2	13.6
11:33	4.7	7.5	12:18	0.1	9.2
11:34	4.4 -	7.4	12:19	0.2	9.7
11:35	4.2	7.1	12:20	0.2	11.1
11:36	, 4.2	7.8	12:21	0.0	9.7
11:37	4.0	7.5	12:22	0.0	10.1
11:38	4.0	7.9	12:23		i
[[0.1	10.2
11:39	4.5 ′	8.5	12:24	0.0	9.8
11:40	4.3	9.3	12:25	0.2	10.1
11:41	4.3 4.9	9.6 10.7	12:26	0.0	10.7
11:42 11:43	4.9	10.7 10.2	12:27 12:28	0.6	10.3
11:43	4.8	11.0	12:28	0.6 0.5	9.9 10.4
11:44	, 4 .6 ⁻	11.0	12:29	0.5	10.4
11:45	, 0.5	12.8	12:31	0.4	10.0
11:47	0.1	5.5	12:32	1.0	10.6
11:47	0.0	6.4	12:33	0.6	10.6
11:49	0.0	6.2	12:34	0.8	10.4
11:50	0.2	10.7	12:35	0.3	10.7
11:51	0.4	5.6	12:36	0.5	15.1
11.51	0.1	3.0	12.50	0.0	13.1

Organic Compounds Emissions Data

Time	. oc	O ₂	Time	ОС	O ₂
	mg/m ³	% v/v		mg/m ³	% v/v
Te	est 1 - 07.08.	1	Te	est 2 - 07.08.	
12:37	1.7	18.1	12:52	0.8	1.8
12:38	3.2	19.6	12:53	0.0	2.3
12:39	0.8	14.5	12:54	0.2	6.0
12:40	0.3	8.5	12:55	0.2	9.3
	-	-	12:56	0.3	11.0
_	_	_	12:57	0.4	10.9
_	-	_	12:58	0.5	10.6
_	_	_	12:59	0.4	11.2
-	-	_	13:00	0.7	-11.1
_	_	_	13:01	0.6	10.0
_	_	_	13:02	0.6	10.9
-	_	_	13:03	0.8	13.0
_	-	_	13:04	0.6	8.3
_	_	_	13:05	0.9	10.1
	_	_	13:06	1.0	11.0
_	_	_	13:07	0.8	9.4
_	_	_	13:08	0.9	10.4
_	_		13:09	.0.8	9.2
_	_	_	13:10	0.6	7.8
_	_	_	13:10	0.0	5.9
	<u> </u>		13:12	0.7	6.0
[<u> </u>	_	13:13	0.0	5.3
<u>-</u>	<u> </u>	_	13:14	0.7	5.3 5.1
	<u> </u>	_	13:15	0.0	4.3
<u> </u>		_	13:16	0.7	4.9
_	_	_	13:17	0.7	4.2
	_	_	13:18	0.7	5.3
_		_	13:19	0.7	6.1
_	_	_	13:20	0.7	6.3
	[]		13:21	0.8	5.6
<u> </u>		_	13:22	0.7	6.7
			13:23	0.6	6.5
_	<u> </u>	· <u>-</u>	13:24	0.8	7.5
_	_	_	13:25	0.6	8.8
_	_	_	13:26	0.8	9.7
_	_	_	13:27	0.3	10.3
_	. <u> </u>	_	13:28	1.1	10.8
1 .	_	_	13:29	0.9	9.8
_		_	13:30	1.0	10.0
_	_		13:31	1.0	11.1
	_	_	13:32	2.2	10.7
	<u> </u>	•			
-	-	-	13:33	1.9	11.9
-	-	-	13:34	1.5	11.7
-	- · · · · · · · · · · · · · · · · · · ·	-	13:35	1.7	12.5
Mean	2.2	9.5	13:36	1.6	12.6


Where - is indicated in table: Cremation over, i.e no more data collected.

Organic Compounds Emissions Data

Time	oc	O ₂
	mg/m³	% v/v
	est 2 - 07.08	.02
13:37	1.7	13.1
13:38	1.7	13.2
13:39	1.7	13.1
13:40	1.6	13.2
13:41	2.1	14.3
13:42	0.9	6.8
13:43	1.7	12.6
13:44	0.9	7.4
13:45	1.7	12.8
13:46	1.0	8.5
13:47	1.6	12.6
13:48	1.7	13.2
13:49 13:50	1.0 1.8	9.1 13.9
13:5 0 13:5 1	1.0	9.0
13:52	1.4	12.2
13:53	1.4	12.2
13:54	1.0	9.0
13:55	1.9	14.6
13:56	1.0	8.9
13:57	1.9	14.7
13:58	1.2	9.7
13:59	2.0	14.8
14:00	1.2	10.2
14:01	2.1	15.0
14:02	1.1	9.9
14:03	2.3	15.4
14:04	1.2	10.2
14:05	2.4	15.5
14:06	1.2	10.2
14:07	2.3	15.3
14:08 14:09	1.3 2.0	10.3 15.6
14:09	2.0 1.9	15. 6 15.2
-	1.9	15.2
_	_	_
-	_	-
-	-	-
-	-	-
-	-	-
-	-	-
-	-	-
-	-	-
	-	-
Mean	1.1	10.1

Where - is indicated in table: Cremation over, i.e no more data collected.

Plant Layout

Oxygen Sampling Methodology

The Testo 350 flue gas analyser is a portable instrument capable of measuring oxygen, carbon dioxide, carbon monoxide, stack temperature, date and time of test. The Testo 350 has a large measuring range for process control in industrial furnaces and a high accuracy level, even in the lower measuring ranges, for limit value control. Up to 500 measurements can be stored directly on location, with online data transmission to a PC possible for long-term measurements. The mobile gas preparation unit Testo 339, which dries the sample gas, can be connected as an option for long-term measurements.

Checks Carried Out Before Arrival On Site

Condensate traps are emptied and particulate filters replaced if necessary. The analyser when switched on, carries out a self-test (approximately 60 seconds) and rinses the measuring cells with fresh air. The analyser is tested with certified bottled calibration gas. If any cells require replacing, or adjustments are required to bring the analyser within calibration, these are made and a certificate of calibration produced. The handset is cleared of data and the analyser batteries fully charged.

On-Site Sampling Procedure

The flue gas probe is connected and the analyser switched on. The analyser is allowed to perform its self-test in fresh air. The appropriate fuel type is selected. The instrument status data (instrument temperature, battery voltage and pump capacity), required for smooth operation are checked. The complete measuring system (probe, condensate trap, tubes and connections) are leak tested. The measuring variables are set and a file created to which measurements are stored. The probe is positioned into the centre of the stack and the access hole plugged. The pump is started and measurements made. During long-term measurements the electronic measuring cells need fresh air phases to regenerate. The number and duration of the required fresh air times depends on the gas concentration and sample duration.

Post-Site Procedure

The handset memory is downloaded to PC and the analyser retested with calibration gas.

Operational Range

The O_2 sensor is a self powered, diffusion limited, metal air battery fuel cell. It has a resolution of 0.1% with an accuracy of 0.1%.

The CO cell has a resolution of 1 ppm with an accuracy of +/- 20 ppm at concentrations less than 400 ppm, +/- 5% at concentrations less than 2000 ppm and +/- 10% at concentrations greater than 2000 ppm.

All sensors and electrochemical cells have filters and cross sensitivity compensation data for more accurate measurements.

Organic Compounds Sampling Methodology

The Signal 3010 MINIFID Portable Heated Total Hydrocarbon Analyser uses Flame Ionisation to detect total organic carbon in a gas stream.

Checks Carried Out before Arrival On Site

The FID analyser is set up and is tested. The following are checked; the furnace and sample line temperatures, the zero and span gas calibration and the operation of the data logger.

On Site Sampling Procedure

The FID and sample line are switched on and allowed to reach operational temperature. The analyser will take 20 minutes to reach its operational temperature of 180°C. The sample line is heated to approximately 180°C to avoid VOCs condensing in the line. When the components have reached the correct operating temperature the fuel and span gas valves are opened and the FID is ignited.

The FID will take about 20 minutes before it stabilises and gives a zero ppm reading. The zero gas is fed into the FID and the zero set. The span gas is fed into the FID and the instrument adjusted to read the certified span gas value. The zero gas is fed into the FID once more to check that the reading returns to zero, if it does not, then these steps are repeated.

The probe, with a particulate filter, is then inserted into the stack, and the data logger activated.

The data logger can be programmed to log results over a 1, 5, 10 etc minute period. The results displayed and logged are the volume concentration of propane in ppm, which are converted to mg/m³ by the following calculations:

$$C_m = C_v \quad 36$$
22.4

where C_m is the TOC concentration in mg/m³ (273 K; 101300 Pa) C_v is the volume concentration of propane in ppm (by volume)

$$C_n = C_i X \left[\frac{100}{100 - \%H_2O_m} \right] X \left[\frac{21 - \% O_{ref}}{21 - \% O_m} \right]$$

where C_n is the TOC concentration in mg/m³ stated at reference conditions of humidity and oxygen is the TOC concentration in mg/m³ (273 K; 101 300 Pa) at flue gas conditions of humidity and oxygen is the measured percentage by volume of water in the flue gas % O_m is the measured percentage by volume of oxygen in the flue gas is the percentage by volume of oxygen at the reference conditions

Quality Assurance Checklist

QA Procedures:

Equipment underwent a calibration check where necessary.	Yes
Recorded information downloaded and printouts made.	Yes
Report saved electronically onto Scientifics server.	Yes
On site data sheet completed and signed off by Team Leader.	Yes
Raw data and hard copy of report filed together.	Yes

Deviations from Test Methods

In this instance, testing was fully in accordance with the respective test methods.

Conclusion

The results of this monitoring exercise demonstrate that under normal operating conditions, this Plant is being operated in full compliance with the Organic Compounds emission concentration limit specified in PG5/2(95).

Good housekeeping and maintenance of the ducting and associated plant should be continued in order to maintain this level of Plant performance.

A regular programme of stack emissions testing in accordance with the Plant's LAPC Authorisation will be required to demonstrate continued compliance.

Test Performed and Report Written by

Jez Anderson

Team Leader

Checked and Authorised By

Signed

DEZ ANDERSON Print Name

8/8/02 Dated

-Business Title

(Delete as appropriate)